Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?
- Как устроены литосферные плиты?
- Как двигаются литосферные плиты?
- Что ученые узнали о теории тектоники плит?
- Какое будущее у науки тектоники?
- История тектонической теории плит
- Что такое тектоническая плита? И сколько их там всего?
- Границы плиты
- Как это работает?
- Тектоническая активность в прошлом
- Их роль в климате Земли
- Земная кора
- Океаническая кора
- Континентальный разлом
- Верхняя мантия
- Литосфера
- Астеносфера
- Переходная зона
- Нижняя мантия
- Граница Ядро-Мантия
- Внешнее ядро
- Внутреннее ядро
- Внутреннее Внутреннее Ядро
- Внутреннее строение Земли
- Почему происходят землетрясения
- Что такое афтершок
- Почему в Японии много землетрясений
- Причина землетрясения в Турции
- Что такое литосферные плиты и почему происходят землетрясения
- Что произошло с тектоническими плитами в Турции
- Чем грозит сдвиг литосферных плит?
Читайте «Хайтек» в
Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.
Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.
Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·106 атм).
Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.
Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.
В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.
Как устроены литосферные плиты?
Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.
Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.
Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.
С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.
Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.
Карта литосферных плит
Типы столкновений литосферных плит:
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Как двигаются литосферные плиты?
Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.
При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.
Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.
Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.
Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.
Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.
Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.
Модель тектоники плит на поверхности вулканического лавового озера
Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:
- Австралийская плита
- Антарктическая плита
- Африканская плита
- Евразийская плита
- Индостанская плита
- Тихоокеанская плита
- Северо-Американская плита
- Южно-Американская плита
Что ученые узнали о теории тектоники плит?
Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.
На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.
Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.
Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.
Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.
А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.
Возраст дна океанов (красный цвет соответствует молодой коре)
Какое будущее у науки тектоники?
Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.
Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.
Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.
В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.
Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.
Аборты и наука: что будет с детьми, которых родят
Земля достигнет критической отметки температуры через 20 лет
В космосе нашли гравитационные волны, меняющие пространство и время. Что это значит?
Что такое тектоника плит? Это один из многих вопросов, которые вы будете решать на ранних этапах уроков географии / геологии. С точки зрения непрофессионала, тектоника плит — это научная теория, которая описывает движения внешней оболочки Земли над ее последующим слоем.
Внешняя оболочка Земли, известная как литосфера, является жесткой и имеет толщину около 100 км. Она состоит из коры (как океанической, так и континентальной) и верхнего слоя мантии.
Ниже литосферы находится астеносфера, вязкий и в основном податливый слой мантии, который позволяет твердому слою сверху скользить и скользить. Он расположен между 80-200 км ниже поверхности земли. Характер и механизм этого движения до сих пор является активной областью исследований.
История тектонической теории плит
Теория тектоники плит — это современная, значительно усовершенствованная версия знаменитой гипотезы дрейфа континентов Альфреда Вегенера, которую он представил в 1912 году. Он предположил, что все континенты были когда-то частью единого массива суши (который он назвал Пангеей) до распада и принятия их нынешней формы. Вегенер, однако, не смог дать правдоподобного объяснения того, как массивные континенты могли двигаться.
Анимация континентального дрейфа за последние 250 миллионов лет
Исследователи начали замечать сходство между формами континентов на каждой стороне Атлантического океана впервые в 16 веке. Несколько выдающихся географов, в 17 и 18 веках, отметили, что континенты Африки и Южной Америки, похоже, тесно связаны друг с другом.
Было предложено несколько теорий для объяснения таких явлений, но ни одна из них не была достаточно достоверной. Теория континентального дрейфа Вегенера также подвергалась критике и даже была отвергнута несколькими геологами.
Только в 1960-х годах, после прямых сейсмологических свидетельств распространения морского дна, научное сообщество приняло тектонику плит (и, в конечном итоге, теорию континентального дрейфа).
Что такое тектоническая плита? И сколько их там всего?
Основные и некоторые второстепенные тектонические плиты
Тектоническая плита — это массивный кусок литосферы неправильной формы, состоящий из коры и самого верхнего слоя мантии. Геологи выделили несколько тектонических плит, которые подразделяются на три основные категории: крупные, мелкие и микро(плиты).
Всего существует восемь основных тектонических плит, включая Тихоокеанскую, Североамериканскую, Южноамериканскую, Евразийскую, Африканскую, Антарктическую, Австралийскую и Индийскую плиты. Плиты, площадь которых превышает 20 млн. Км 2, классифицируются как основные. Имеется пятнадцать малых плит и множество известных микроплит.
Границы плиты
Тектонические плиты многократно взаимодействуют друг с другом, и место, где они взаимодействуют, называется границами плит. По характеру этого взаимодействия границы плит можно разделить на три типа: расходящиеся, сходящиеся и трансформирующиеся.
Расходящаяся граница — это место, где две противоположные литосферные плиты удаляются друг от друга, оставляя за собой зазор. Этот разрыв заполняется магмой, которая поднимается изнутри земной мантии.
Лучшим примером расходящейся границы является срединно-океанический хребет, где тектонические плиты постепенно удаляются друг от друга, в то время как восходящая магма непрерывно создает новую кору.
Сходящаяся граница, с другой стороны, — это место, где одна литосферная плита опускается под другую. Эти регионы также известны как зоны субдукции, где часто происходят землетрясения и извержения вулканов.
Третий тип границы плит — это трансформирующийся разлом, когда плиты скользят друг о друга по горизонтали. Хотя большая часть разломов трансформации находится под океанами, лишь немногие из них наблюдаются на суше, как, например, калифорнийский разлом Сан-Андреас.
Другими примерами границы преобразования являются разлом Чамана в Пакистане, Северо-Анатолийский разлом в Турции и разлом Королевы Шарлотты в Соединенных Штатах.
Как это работает?
Как работает тектоника плит? Или, точнее, что заставляет массивные тектонические плиты перемещаться по планете? Ответ будет двояким. Первый — некая мантийная конвекция (пока неясно), а второй — гравитация.
Конвекция в мантии
Мантийная конвекция — это процесс, при котором тепло из недр земли медленно передается на поверхность конвекционными потоками. Она управляет тектоникой плит на земле посредством тяги (погружения) и толкания (распространения).
Горячая лава поднимается в середине океанических хребтов, а холодная, относительно плотная океаническая литосфера погружается глубоко в мантию в зонах субдукции. Долгое время этот процесс считается ведущей силой, заставляющей двигаться тектонические плиты.
Однако ученые-геологи сейчас считают, что гравитация играет в тектонике плит гораздо более важную роль, чем считалось ранее. Новая кора, формирующаяся на срединно-океанических хребтах, значительно менее плотная, чем астеносфера. Она постепенно отходит от расходящейся границы и становится прохладнее (за счет проводящего охлаждения), а также плотнее. Более высокая плотность океанической литосферы по сравнению с астеносферой позволяет ей опускаться вглубь мантии в зонах субдукции.
Механизм, позволяющий новой коре медленно удаляться от срединно-океанических хребтов, известен как гравитационное скольжение (обычно называемое хребтовым толчком). По мере формирования новой океанической литосферы вблизи хребта гравитация заставляет ее опускаться вниз и толкать старые материалы, чтобы удалиться от хребта дальше.
Тектоническая активность в прошлом
Самому старому фрагменту континентальной коры, найденному на Земле, около 4,02 миллиардов лет (сам возраст Земли составляет 4,54 миллиарда лет). Однако, поскольку океаническая литосфера постоянно перерабатывается, самому раннему известному морскому дну всего около 340 миллионов лет. Он был обнаружен в части восточного Средиземного моря.
Исследователи полагают, что тектоническая активность впервые началась на Земле около 3-3,5 миллиардов лет назад, основываясь на древних породах и минералах, добытых со всего земного шара. Континенты были здесь на протяжении большей части земной истории; тем не менее, они, вероятно, прошли через несколько конфигураций, прежде чем достигнут той формы, в которой они находятся сегодня.
Значительное количество исследований было сделано для реконструкции истории тектоники плит на земле. Непрерывное (хотя и медленное) движение тектонических плит позволяет континентам формироваться и разрушаться с течением времени. Это включает в себя окончательное образование (и распад) суперконтинента, единой массы суши, которая содержит все континенты.
Считалось, что первый суперконтинент сформировался еще 2 миллиарда лет назад и распался около 1,5 миллиарда лет назад или около того. Он называется Колумбия или Нуна.
Следующий (возможно) суперконтинент, Родиния, образовался 1 миллиард лет назад, а затем разорвался примерно 600 миллионов лет назад. Пангая, последний суперконтинент, был создан около 300 миллионов лет назад в позднепалеозойскую эпоху.
Когда Пангея распалась почти 175 миллионов лет назад, она была разделена на две большие части; Прото-Лавразия и Прото-Гондвана, в то время как оба были разделены Океаном Тетис.
Лавразия стала тем, что мы теперь знаем, как Европа, Азия и Северная Америка, в то время как Гондвана стала остальным миром, который включает Индийский субконтинент, Африку, Южную Америку, Аравию, Австралию и Антарктиду.
Их роль в климате Земли
Ряд исследований, проведенных астробиологами и геологами, показал, что тектоника плит может быть существенно важной для поддержания жизни на земле в ее нынешнем виде. Без рециркуляции его коры, мы не могли бы иметь стабильную температуру на поверхности. Без субдукции и создания новой коры земные океаны могли бы остаться лишенными питательных веществ, дающих жизнь. Исследование, проведенное в 2015 году, даже утверждает, что тектоника плит имеет важное значение для эволюции передовых видов.
Поскольку невозможно непосредственно наблюдать глубины планеты, наше текущее понимание этого вопроса полностью основано на топографических исследованиях поверхности и анализе вулканических выбросов и сейсмических волн.
Землю можно просто разделить на три слоя: кору, мантию и ядро, но другие слои также распознаются благодаря своим уникальным химическим свойствам и плотности. Ниже приведены важные слои земли, которые вы должны знать.
Земная кора
Кора — это самый внешний слой земли, глубина которого колеблется от 5 до 70 км. Земная кора состоит из трех основных типов камней; магматические, осадочные и метаморфические наиболее распространенные из магматических (гранит и базальт).
Корка делится на два типа; океаническая кора и континентальная кора. Линия или граница, которая разделяет эти два, называется разрывом Конрада.
Океаническая кора
Океаническая кора простирается от 5 до 10 км ниже морского дна. Он в основном состоит из мафических пород (базальт) и часто упоминается как Сима (силикат магния). Плотность океанической коры составляет около 3 г / см3.
Океаническая кора непрерывно формируется в середине океанических хребтов в процессе, называемом распространением морского дна. Когда магма поднимается из разлома, она распространяется и постепенно остывает, превращаясь в новую океаническую кору. Возраст океанической коры можно определить по ее удаленности от срединно-океанических хребтов.
Этому процессу противостоит разрушение океанической коры в зонах субдукции. Зона субдукции — это место, где одна плита (как океаническая, так и континентальная) подчинена мантии вышележащей плитой.
Из-за этой «переработки» океанической коры они намного моложе континентальной коры. Самой древней сохранившейся океанической коре около 340 миллионов лет, в то время как континентальной коре в некоторых регионах столько же лет, сколько и самому возрасту Земли.
Континентальный разлом
Континентальная кора полностью состоит из скалистых пород, таких как гранит. Он толще (30-50 км), чем океаническая кора, но также менее плотен (2,7 г / см3). Как и океаническая кора, континентальная кора образована тектоникой плит, но гораздо менее разрушена.
Верхняя мантия
Прямо под земной корой лежит мантия, которая разделена на два основных слоя; верхняя и нижняя мантия. Мантия в целом составляет около 84% объема земли.
Расчетная глубина верхней мантии составляет около 640 км, а всей мантии (включая нижнюю мантию) — ок. Глубина 2900 км.
Граница, которая отделяет земную кору от верхней мантии, называется разрывом Мохоровича (для краткости Мохо), однако она не обнаружена на одинаковой глубине. Мохо был обнаружен хорватским сейсмологом Андрией Мохоровичем в 1909 году.
В этом слое расположены две механически разные области, а именно литосфера и астеносфера.
Литосфера
Литосфера — это твердый и жесткий слой земли, который включает в себя кору и самый верхний участок верхней мантии. Литосфера бывает двух типов; континентальная литосфера (расширение континентальной коры) и океаническая литосфера.
Континентальная литосфера состоит в основном из фельсиковых пород (пород с высоким содержанием кремнезема). Океаническая литосфера, с другой стороны, почти полностью состоит из перидотита (ультрамафитовой породы с низким содержанием кремнезема) и более плотной, чем континентальная литосфера.
Астеносфера
Астеносфера показана на границе субдукции
Под литосферой лежит гораздо более плотный и механически слабый слой астеносферы. Хотя этот слой обычно располагается где-то между глубинами 80 и 200 км, в некоторых регионах он может простираться на 700 км ниже поверхности Земли.
Давление и температура в астеносфере настолько высоки, что породы становятся полурасплавленными. Интересно, что астеносфера гораздо более пластична, чем нижняя мантия, где температура намного выше. Граница литосферы и астеносферы (LAB) — это то, что разделяет два слоя, а его глубина определяется очевидными изменениями химических и термических свойств горных пород.
И литосфера, и астеносфера связаны с тектоникой плит — геонаучной теорией, которая описывает движение литосферных блоков, известных как тектонические плиты.
Проще говоря, жесткая астеносфера «плавает» на вершине пластичной астеносферы, заставляя тектонические плиты двигаться. Геологические виды деятельности, такие как землетрясения и извержения вулканов, обычно связаны с тектоникой плит.
Переходная зона
Переходная зона представляет собой отчетливый слой в мантии Земли между глубинами 410 км и 660 км ниже поверхности. Здесь из-за высокой температуры и давления породы становятся более плотными и претерпевают структурные изменения (кристаллизация).
Исследования показали, что переходная зона мантии содержит столько же воды, сколько и океаны Земли. Однако вода существует там только в форме гидроксид-ионов. На глубинах 525-660 км гидроксид-ионы улавливаются минералами из оливина, такими как вадслиит и рингвудит.
Нижняя мантия
Между переходной зоной и ядром лежит нижняя мантия. Он простирается от 660 км до примерно 2900 км ниже поверхности Земли. Температура в нижней мантии колеблется от 1900 до 2630 К, в зависимости от глубины. Хотя эта область намного горячее и плотнее верхней мантии, она гораздо менее пластична.
Нижняя мантия в основном состоит из минералов, таких как кальциево-силикатный перовскит и ферропериклаз, оба происходят из рингвудита.
На основе сейсмической модели Предварительная эталонная Земля (PREM) нижняя мантия может быть разделена на три секции; самая верхняя нижняя мантия, средне-нижняя мантия и слой D ”.
Граница Ядро-Мантия
Граница ядро-мантия — это место, где богатая силикатами нижняя мантия взаимодействует с никель-железным внешним ядром. Он расположен примерно на 2890 км ниже земной поверхности и соответствует скачкам сейсмической скорости. Граница также известна как разрыв Гутенберга.
Внутренняя структура Земли
Ядро Земли — самая горячая и самая плотная часть нашей планеты. Считается, что он почти полностью состоит из Никла и Айрон. Ядро делится на два слоя; твердое внутреннее ядро и жидкое внешнее ядро, а граница, разделяющая эти две области, называется разрывом по Буллену.
Внешнее ядро
Внешнее ядро простирается от 2900 км до примерно 5150 км ниже поверхности Земли. Несмотря на то, что точную температуру ядра Земли практически невозможно измерить, по оценкам, она находится где-то между 3000 К и 4500 К вблизи ее верхних областей. Он может подняться до 8000 К вблизи своей границы с внутренним ядром.
Внешнее ядро, по-видимому, имеет очень низкую вязкость, что вызывает сильную конвекцию в этой области. Согласно теории динамо, жидкое никель-железное внешнее ядро — то, что питает магнитное поле Земли. Средняя напряженность магнитного поля внешнего ядра (2,5 миллисела) примерно в 50 раз выше, чем у поверхности.
Внутреннее ядро
В отличие от жидкого внешнего ядра, внутреннее ядро Земли является твердым и имеет общий радиус 1220 км. Его расчетная температура близка к 5700 К, аналогично температуре внешней поверхности Солнца. Хотя температуры во внутреннем ядре намного превышают температуру плавления железа, он остается твердым из-за сильного давления, оказываемого остальной частью земли.
Поскольку внутреннее ядро соединено с жидким внешним ядром, оно может вращаться с несколько иной скоростью, чем остальные. Эта теория была подтверждена исследованием, проведенным в 2005 году.
Анализируя разрывы в сейсмических волнах, исследователи смогли сделать вывод, что внутреннее ядро Земли фактически вращается быстрее, чем остальная часть Земли, примерно на 0,3–0,5 градуса в год, что в 50 000 раз превышает тектоническое движение плиты.
Внутреннее ядро растет примерно на 1 мм / год. Поскольку тепло от внешнего ядра передается в мантию, это заставляет внутреннюю часть жидкой области замерзать или затвердевать, а внутреннее ядро толкаться вверх.
Внутреннее Внутреннее Ядро
В 2015 году, изучая эхо землетрясений, исследователи получили ранее неизвестные сведения о внутреннем ядре Земли. Исследование предполагает, что есть внутренний слой во внутреннем ядре. Он дублирован как внутреннее внутреннее ядро. Этот слой отличается от внутреннего ядра так же, как внутреннее ядро отличается от внешнего ядра.
Утром 6 февраля на юге Турции произошло мощное землетрясение магнитудой 7,7. Также последствия подземного толчка ощутили на себе жители Сирии и ряда других соседних стран. Информация о количестве пострадавших постоянно обновляется и шокирует цифрами — по данным за 7 февраля, число раненых в Турции составляет более 15 тысяч человек, погибли почти 3 тысячи человек. В Сирии травмы получили около 1500 человек, а погибли примерно 700 мужчин, женщин и детей. Важно отметить, что когда речь идет о землетрясении, имеется в виду не только один подземный толчок — после первого землетрясения обычно происходит второе, третье и так далее. Более того, подземные толчки могут наблюдаться на протяжении нескольких лет. В рамках данной статьи предлагаем узнать, из-за чего происходят землетрясения и почему они не ограничиваются одним подземным толчком.
Последствия землетрясения в Турции, 2023 год
Интересный факт: иногда землетрясения происходили даже в Москве и Санкт-Петербурге, хотя они не находятся на сейсмически активной территории. Об этом необычном явлении у нас есть отдельный материал, вот ссылка. Об этом нужно знать всем!
- Внутреннее строение Земли
- Почему происходят землетрясения
- Что такое афтершок
- Почему в Японии много землетрясений
- Причина землетрясения в Турции
Внутреннее строение Земли
Перед тем, как говорить о причинах землетрясений, нужно разобраться в строении Земли. Наша планета состоит из трех основных слоев: коры, мантии и ядра. Кора является самым верхним слоем и состоит из относительно целостных блоков — литосферных плит. На данный момент ученым известно о существовании восьми крупных, десятках средних и огромном количестве маленьких плит.
Самые крупные литосферные плиты это Американская, Африканская, Антарктическая, Индо-Австралийская, Евразийская, Тихоокеанская и Амурская. Россия располагается на четырех плитах: большая часть страны лежит на Евразийской плите, территория Чукотки расположена на Северо-Американской плите, Побережье Магаданской области и Камчатки находятся на Охотоморской плите, а южные территории Сибири располагаются на Амурской литосферной плите.
Самые большие литосферные плиты и их движение
Литосферные плиты находятся в постоянном движении, потому что буквально плавают в пластичном слое верхней мантии — астеносфере. Это происходит очень медленно, потому что астеносфера хоть и способна течь как жидкость, но обладает крайне низкой вязкостью, а литосферные плиты тяжелые. По расчетам ученых, тектонические плиты движутся относительно друг друга со скоростью до 10 метров в год.
Изображение движения литосферных плит
Твердая оболочка Земли, на которой находятся упомянутые выше плиты, называется литосферой. Научное представление о строении и движении литосферы называется тектоникой плит. Поэтому иногда литосферные плиты называются тектоническими — это одно и то же.
Почему происходят землетрясения
В основном землетрясения происходят из-за движения литосферных плит. Но есть и несколько других причин — иногда землетрясения происходят из-за вулканов и деятельности людей.
Движение литосферных плит редко проходят незаметно. Когда они трутся или вообще проходят над или под друг другом, на поверхности земли все начинает трястись — это и есть землетрясение. Зачастую подземные толчки оказываются небольшими и толчки вызывают вибрации, которые можно зафиксировать при помощи специального устройства (сейсмометра). Иногда между тектоническими плитами накапливается напряжение, которое в определенный момент резко высвобождается — в таком случае происходят катастрофические землетрясения с огромным количеством разрушенных сооружений и человеческих жертв.
Схематическое изображение землетрясения
Место, где происходит смещение горных пород, называется очагом землетрясения. Чаще всего это место находится на глубине до 10 километров, но бывает и такое, что горные породы смещаются на глубине 700 километров. Если от очага землетрясения провести перпендикулярную линию, она покажет на эпицентр землетрясения. В этой точке наблюдается больше всего разрушений, потому что на нее сильнее действуют сейсмические волны. Мощность землетрясения оценивается в магнитудах по шкале Рихтера от 1 (небольшое землетрясение) до 9,5 (катастрофическое землетрясение).
Очаг и эпицентр землетрясения
Обязательно почитайте наш материал про 10 самых разрушительных землетрясений в истории человечества. Вот ссылка.
На границах литосферных плит располагается множество вулканов — в этих местах находящаяся внутри планеты магма может выходить на поверхность. Внутри вулканов происходит множество процессов, включая выделение газов и других веществ. В итоге, в глубинах планеты иногда возрастает напряжение, которое тоже способно привести к землетрясению. Считается, что подземные толчки являются предвестниками извержений вулканов.
Причиной землетрясений также могут быть процессы, происходящие внутри вулканов
Землетрясения могут происходить во время строительства и другой деятельности человека
К тому же, иногда землетрясения могут быть вызваны падением астероидов. Недавно ученые выяснили, что зафиксированное в 2021 году землетрясение на Марсе было вызвано столкновением с космическим объектом.
Что такое афтершок
Землетрясения редко ограничиваются одним подземным толчком — после нее часто происходят повторные. Они называются афтершоками и обычно их сила с каждым разом уменьшается. Повторные толчки могут фиксироваться как на протяжении пары дней после первого землетрясения, так и продолжаться недели и даже годы.
Афтершоки могут наблюдаться на протяжении нескольких лет после землетрясения
Афтершоки происходят потому, что накопившееся между литосферными напряжение при первом землетрясении сбрасывается не полностью. Плотность пород в очаге снижается, в результате чего возникают новые условия для сброса оставшейся энергии. Чем мощнее было первое землетрясение, тем сильнее ощущаются афтершоки и на протяжении большего времени. Например, ученые замечали, что после землетрясений магнитудой 7 афтершоки длятся около года, но такое происходит не всегда.
Интересный факт: предсказать землетрясение можно по поведению животных. О том, как они ведут себя перед катастрофой, мы рассказывали в этом материале.
Почему в Японии много землетрясений
Мощные землетрясения обычно происходят на стыках литосферных плит. Например, такие катастрофы часто происходят в Японии, потому что она располагается на стыке сразу нескольких тектонических плит. Они часто смещаются, поэтому этот регион считается зоной повышенной сейсмической активности. Иногда землетрясения происходят под водой, из-за чего возникают цунами — огромных волн высотой до 500 метров, которые способны двигаться со скоростью до 160 километров в час.
Причина землетрясения в Турции
Турция тоже располагается в сейсмически опасной зоне — под ней располагаются Евразийская, Анатолийская, Африканская и Арабская тектонические плиты. Причина землетрясения в Турции в 2023 году заключается в том, что африканская плита надавила на аравийскую и она двинулась на север. После этого она начала двигаться по Восточно-Анатолийскому разлому, в результате чего и произошло мощное землетрясение. Ранее ученые считали, что землетрясение в этой области очень маловероятно, что и стало одной причин больших потерь — люди попросту не были готовы к этому.
Движение литосферных плит под Турцией
После первого подземного толчка было зафиксировано еще 285 афтершоков магнитудой от 3 до 6. Они ощущались не только в Турции, но и других соседних странах.
Об особенностях шкалы Рихтера, сейсмически опасных местах России и других интересных подробностях на тему землетрясений вы можете почитать тут.
Ученым давно известно, что территория Турции находится в сейсмоопасной зоне — на стыке двух литосферных плит. К примеру, Немецкий исследовательский центр геологических наук (GFZ) в Потсдаме занимается сейсмическим мониторингом в этой зоне еще с 1980-х годов. Данные показывали, что риск землетрясений крайне высок во всем регионе вокруг Мраморного моря. Более того, за последнюю четверть века в Турции уже было семь землетрясений с магнитудой 7 и выше. Однако землетрясение, произошедшее 6 февраля 2023 года стало неординарным сейсмологическим событием не только для Турции, но и всего мира, по которому прокатилась волна землетрясений. Но с чем это связано и насколько грозит последствиями в будущем не только Турции, но и другим регионам?
В Турции литосферные плиты сдвинулись более чем на 3 метра
Что такое литосферные плиты и почему происходят землетрясения
Земля, в отличие от многих других планет солнечной системы, имеет не монолитную кору, а множество отдельных литосферных плит, которые дрейфуют в вязкой мантии. Обычно они смещаются в год на несколько сантиметров, что является нормальным явлением. Но иногда эти плиты сталкиваются друг с другом.
Как правило, после столкновения плиты начинают давить друг на друга, то есть между ними возникает напряжение, которое нарастает до тех пор, пока не начинает превышать их прочность. В результате возникает разлом или одна из полит начинает уходить под другую. То есть в этот момент происходит разрядка напряжения, и в результате чего плиты резко приходят в движение. При этом на поверхности земле возникают те самые разрушительные толчки.
Землетрясение происходит, когда литосферные плиты сдвигаются друг относительно друга
Именно по этой причине наиболее сейсмоопасными считаются районы, которые расположены на стыке двух литосферных плит или у их края. Примером является Турция, большая часть которой находится на Анатолийской плите, а юго-запад — на Аравийской плите. Между ними имеется глубокий тектонический разлом.
Что произошло с тектоническими плитами в Турции
Сейсмологи еще несколько лет назад говорили, что литосферные плиты на территории Турции, фактически, сцеплены. Поэтому землетрясение было лишь делом времени. Как отмечают эксперты Аравийская плита давит на Анатолийскую на протяжении сотен лет, в результате чего напряжение накапливаетя. Так как мощных землетрясений в Турции не было давно, скопилось много энергии.
Когда эта энергия высвободилась, плиты разошлись вдоль разлома протяженностью 150 км, причем в течение нескольких секунд они сместились на расстояние до 3 метров, а в некоторых местах даже больше. То есть Турция, фактически, сдвинулась относительно Сирии на юго-запад, о чем сообщает профессор Карло Доглиони, президент Национального института геофизики и вулканологии.
Сдвиг литосферных плит хорошо виден по деформации железной дороги в Турции
Согласно последним данным итальянских сейсмологов, смещение плит друг относительно друга произошло не только в горизонтальной плоскости, но и вертикальной. Часть территории Турции опустилась на 5-6 метров, в результате чего стране теперь грозит еще и затопление.
Разлом после землетрясения в Турции, сняты из космоса российским спутником «Канопус-В»
Кроме того, на месте разлома образовалось ущелье глубиной порядка 30 метров и шириной около 200 метров. Но, что самое интересное, со спутника зафиксировано движение тектонических плит вдоль линии разлома даже после землетрясения, что настораживает ученых.
По оценкам специалистов, высвободившаяся энергия, вызвавшая землетрясение, по силе равна взрыву 300 средних атомных бомб. Внезапного землетрясения такой мощности на территории Турции еще не было ни разу со времен изучения сейсмологии.
Чем грозит сдвиг литосферных плит?
“Заряженный” стык двух литосферных плит “разрядился”, можно сказать “выстрел” произошел, а значит все самое страшное уже позади. Но действительно ли все закончилось? На самом деле нет. Как мы недавно рассказывали одним толчком землетрясения подобной мощности не ограничиваются. Повторные толчки, или афтершоки, могут длиться на протяжении нескольких дней, месяцев или даже лет. Но, к счастью, их сила с каждым разом ослабевает.
В результате смещения Аравийской и Анатолийской плит, волна землетрясений прокатилась по всему миру
Но больше всего общественность во всем мире напугали сообщения о землетрясениях, которые одновременно стали происходить в самых разных точках планеты, на разных континентах. С чем это связано? После подобных землетрясений возникают сейсмические волны, которые несколько раз обходят Землю. Они могут спровоцировать сейсмическую активность в других регионах, которые совсем не связаны с литосферными плитами, ставшими причиной землетрясения. Но самое неприятное то, что они способны спровоцировать вулканическую активность.
Однако предугадать возможные последствия таких землетрясений ученые не могут. Собственно говоря, даже сами землетрясения предсказать невозможно, не говоря уже о последствиях сейсмических волн. Поэтому остается лишь наблюдать за ситуацией и надеяться на лучшее.
Еще больше интересных материалов вы найдете на нашем ЯНДЕКС.ДЗЕН КАНАЛЕ. Подписывайтесь скорее, чтобы не пропустить самое интересное!
Напоследок напомним, что нынешнее землетрясение в Турции хоть и было чрезвычайно мощным, оно далеко не самое мощное и разрушительное за историю наблюдений. Подробнее узнать о самых разрушительных землетрясениях можно по этой ссылке.
Точно прогнозировать землетрясения люди пока не научились, хотя работы в этом направлении ведутся постоянно. Предсказать время землетрясения в Турции и Сирии 6 февраля было практически невозможно, поскольку оно началось сразу с крупных сейсмических толчков. Об этом в интервью RT рассказал профессор, доктор географических наук, заведующий кафедрой геоморфологии и палеогеографии МГУ Андрей Бредихин. Землетрясение не стало неожиданностью для специалистов, поскольку Турция находится в зоне высокой сейсмической активности. На территории России тоже есть ряд таких зон, напомнил учёный. Все опасные районы нанесены на специальные карты сейсмической активности, которыми необходимо руководствоваться при строительстве зданий.
— Андрей Владимирович, учёные установили, что недавнее землетрясение в Турции привело к сдвигу литосферных плит на 3 м. По данным специалистов, Аравийская плита сдвинулась примерно на 3 м по отношению к Анатолийской плите. Бывали ли прежде настолько заметные подвижки плит?
— Горизонтальное перемещение литосферных плит, уходящих основаниями в верхнюю мантию, — доказанное явление. Однако это всегда не разовый, единовременный сдвиг, а плавный процесс, во время которого разные участки плит перемещаются с разной скоростью. Во время землетрясения и следующих за ним афтершоков (повторных толчков. — RT) происходит серия локальных горизонтальных и вертикальных деформаций, в результате происходят сдвиги литосферных плит в региональном масштабе. Можно сказать, что Аравийская плита сдвинулась относительно Анатолийского блока, но оценивать реальные перемещения пока преждевременно.
— Насколько типичны для этого региона землетрясения такой силы?
— На территории Турции есть две зоны активных разломов. Первый, Северо-Анатолийский разлом, проходит по южному макросклону Понтийского хребта на севере, он тянется с запада на восток страны. Второй — на востоке, протягивается от Средиземного моря через районы городов Искендерун, Газиантеп и далее на северо-восток. Движение Аравийской плиты с юга на север приводит к постоянным подвижкам. В зоне этих разломов постоянно фиксируются однотипные сдвиговые деформации и часто происходят мощные землетрясения.
Так, в 1999 году в западной части Турции произошло очень сильное землетрясение магнитудой 7,7. В 1939, 1944 годах в этом же районе были землетрясения магнитудой 7,5 и т. д. Есть исторические свидетельства о разрушительных землетрясениях на территории современной Турции начиная с 900-х годов нашей эры, много таких событий отмечалось, например, в XVII веке. В последние годы в научных исследованиях часто встречались прогнозы, согласно которым мощное землетрясение ожидалось на западе страны, в районе Стамбула. Однако оно произошло на востоке страны. Кстати сказать, где оно и должно было произойти.
В целом всем специалистам было ясно, что в Турции должно произойти землетрясение магнитудой выше 7, вопрос был только в том, когда именно оно произойдёт.
— А известна хотя бы примерная периодичность, с которой это происходит?
— Рост напряжения в земной коре происходит постоянно, в какие-то моменты оно находит выход в виде сильных сейсмических толчков. Традиционно считается, что одно крупное землетрясение в сейсмически опасном районе происходит примерно раз в 200—250 лет. На практике это может происходить намного чаще — мы видим это на примере Турции. Если бы мы могли точно прогнозировать время землетрясений, не было бы таких трагедий, как та, что произошла в Турции.
Также по теме
Как вулкан землетрясение остановил: учёные о взаимодействии двух стихийных бедствий
— Сейчас разрабатываются приложения для смартфонов для оповещения о землетрясениях — они фиксируют самые первые толчки с помощью встроенных в телефон акселерометров и сообщают об опасности. Как вы думаете, могут ли такие мобильные технологии помочь уменьшить число жертв в случае землетрясения?
— Да, в смартфоны могут быть установлены такие датчики, которые могут отследить микроколебания земли. Но проблема в том, что в техногенной городской среде такие микроколебания происходят постоянно из-за метро, движения грузового транспорта и т. д. И в таких условиях подобные датчики будут постоянно срабатывать даже без угрозы землетрясения. Отделить же антропогенный сейсмический шум от истинных глубинных толчков личными гаджетами пока нет возможности.
— Были ли какие-то особенности у землетрясений в Турции и Сирии?
— Научных данных пока мало, но если судить по циркулирующей в СМИ информации, то одно из самых необычных явлений наблюдается в районе турецкого города Искендерун, который начал затапливаться после землетрясения. То есть произошло опускание участков суши, что и привело к подтоплению прибрежной полосы.
— 6 февраля сейсмические толчки отмечались по всей планете: их фиксировали в районе Курильских островов, в Нью-Йорке, на Байкале — всего было зафиксировано более 200 землетрясений. Насколько типична такая ситуация, когда сейсмическая волна прокатывается по всей планете?
— Да, это типичная ситуация. Например, когда в 1977 году в Румынии, в горах Вранча (Южные Карпаты) произошло крупное землетрясение, толчки докатились до Москвы — в квартирах раскачивались люстры и гремела посуда. Так что да, когда происходят крупные землетрясения, толчки могут распространяться на очень большие расстояния.
Кроме того, надо учитывать, что смещается фокус внимания СМИ и общества, все начинают пристально следить за новостями о подземных толчках. Например, в районе Байкала сейсмические толчки отмечаются постоянно, они фиксировались этим летом, например, а также осенью. Это обычное явление для этой суперсейсмической зоны, тянущейся в сторону Монголии. Но тогда об этом никто не писал, сейчас же люди обратили внимание на все события такого рода, происходящие на планете.
При этом далеко не всегда землетрясения сопровождаются такими разрушениями и жертвами, как сейчас в Турции.
Например, буквально недавно, 9 января, землетрясение магнитудой 7,6 произошло у берегов Индонезии, в результате погибли люди, но жертвы исчислялись не тысячами, а десятками.
- Затопление улиц в турецком городе Искендерун после землетрясения
- globallookpress.com
В Турции наложилось сразу несколько факторов — высокая плотность населения и очень низкое качество строительства, «на честном слове», как говорят. Кроме того, землетрясение произошло рано утром, когда люди спали в своих домах.
— Насколько на сегодняшний день науке понятна природа землетрясений?
— Принципиально она понятна — есть физические, расчётные модели. Литосферные плиты движутся постоянно, на их стыках копится напряжение, которое периодически находит разрядку в виде землетрясений — когда превышается предел упругости горных пород в земной коре.
Нелинейные процессы: российский геолог — о прогнозировании землетрясений и глубинной структуре Земли
Кстати, эпицентр землетрясения 6 февраля в Турции и Сирии находился близко к поверхности, в земной коре. Такие землетрясения обычно сильно влияют на рельеф местности — рисунок гидросети, речных русел, крупные разрывы на поверхности. Так что у этого события вполне могут быть и другие географические последствия, которые пока просто не успели зафиксировать — сейчас не до этого.
— Сейчас в турецких СМИ и соцсетях распространяются слухи об искусственном характере землетрясения. Как можно прокомментировать такие гипотезы с научной точки зрения?
— Спровоцировать землетрясение технически возможно — если произвести подземные ядерные взрывы большой мощности. Такие взрывы могут вызвать дополнительное напряжение в земной коре, что может стать спусковым крючком — триггером для землетрясения, если оно уже назревало.
Однако почвы под такими разговорами применительно к землетрясению 6 февраля нет, поскольку искусственные взрывы всегда фиксируются приборами в различных сейсмических центрах. Это невозможно не заметить.
— Могут ли зоны сейсмической активности смещаться в глобальном масштабе — какие-то районы «успокаиваться», а какие-то, наоборот, «пробуждаться»?
— Да, периодичность в активности тех или иных тектонических участков действительно отмечается. В отдельные периоды активизируется то Байкальский рифт (крупный тектонический разлом в земной коре. — RT), то, к примеру, Рейнский грабен. Кстати, он расположен в центре Европы — это тоже довольно сейсмически активная зона. Или, например, в США ожидают страшный взрыв Йеллоустонского макровулкана, этим постоянно пугают общественность. Он расположен тоже в сейсмически активной зоне, просто сейчас там не очень интенсивны тектонические процессы.
Более 31 тыс. погибших: в Турции продолжается ликвидация последствий землетрясения
— Помимо Байкала, какие ещё есть сейсмически активные зоны в России? Например, звучал прогноз, что аналогичное турецко-сирийскому землетрясение может произойти в будущем в Крыму.
— Тут не надо даже гадать, поскольку есть сейсмическое районирование России. Не только Крым, но и все горные сооружения России, включая старый и тихий Урал, относятся к зонам тектонической и в том числе сейсмической активности. Кстати, старые в геологическом смысле горы обычно находятся в зоне семибалльной сейсмичности. Про Дальний Восток можно и не упоминать, о сейсмической активности Камчатки наслышаны все. При этом Кавказ входит вообще в зону девяти- или десятибалльной активности. Все эти данные должны служить руководством для строителей, здания должны возводиться в соответствии с ними. По крайней мере, строители точно знают об этих предписаниях, исполняют или нет — это другой вопрос.
Возвращаясь к Крыму, отмечу, что, согласно последней редакции карты Общего сейсмического районирования России, его южное побережье входит, как и Кавказ, в 9—10-балльную зону сейсмической активности, центральные районы — в 8—9-балльную, а северный — в 7-балльную.
— Вопрос, который мучает всех: можно ли прогнозировать крупные землетрясения, чтобы они не уносили столько человеческих жизней?
— К сожалению, пока это невозможно. Хотя такие разработки ведутся. Например, учёные пытаются научиться узнавать о скором землетрясении благодаря системам GPS-отслеживания высотного положения земной поверхности. Дело в том, что Земля «дышит», её поверхность постоянно колеблется с разной скоростью из-за протекающих в недрах процессов. Амплитуда колебаний измеряется миллиметрами, поэтому мы этого не замечаем. Можно попробовать фиксировать участки, где планета начинает вдруг «дышать» более часто и «глубоко» из-за начинающихся глубинных возмущений.
Сейсмолог Татевосян назвал маловероятным рост числа мощных землетрясений в ближайшие годы
Плюс никто не отменяет и традиционные геофизические методы, позволяющие отследить первые микротолчки, которые предшествуют сильным колебаниям. Правда, так бывает не всегда — например, 6 февраля в Турции и Сирии землетрясение началось резко, без предупреждающих толчков.
Есть и разные косвенные методы — например, можно отслеживать уровень грунтовых вод, поскольку внутренние колебания в земной коре отражаются на водных горизонтах.
И последнее — животные часто заранее реагируют на приближающееся землетрясение и покидают дом. Они чувствуют микроколебания на определённой частоте, это известный факт. Так что если вы живёте в сейсмически опасной зоне, то завести домашних питомцев — хорошая идея.
Текто́ника плит — современное научное представление в геотектонике о строении и движении литосферы, согласно которому земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга. При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции. Теория тектоники плит объясняет возникновение землетрясений, вулканическую деятельность и процессы горообразования, по большей части приуроченные к границам плит.
Классификация геотектонических процессов согласно концепции тектоники плит.
Впервые идея о движении блоков коры была высказана в теории дрейфа континентов, предложенной Альфредом Вегенером в 1920-х годах. Эта теория была первоначально отвергнута. Возрождение идеи о движениях в твёрдой оболочке Земли («мобилизм») произошло в 1960-х годах, когда в результате исследований рельефа и геологии океанического дна были получены данные, свидетельствующие о процессах расширения (спрединга) океанической коры и пододвигания одних частей коры под другие (субдукции). Объединение этих представлений со старой теорией дрейфа материков породило современную теорию тектоники плит, которая вскоре стала общепринятой концепцией в науках о Земле.
В теории тектоники плит ключевое положение занимает понятие геодинамической обстановки — характерной геологической структуры с определённым соотношением плит. В одной и той же геодинамической обстановке происходят однотипные тектонические, магматические, сейсмические и геохимические процессы.