- Исследователи раскрыли тайну глубокофокусных землетрясений
- ОписаниеПравить
- Сейсмические волны и их измерение
- Процессы, происходящие при сильных землетрясениях
- Измерение силы и воздействий землетрясенийПравить
- Шкала магнитуд. Шкала Рихтера
- Шкала Медведева-Шпонхойера-Карника (MSK-64)
- Другие виды землетрясенийПравить
- Тектонические и техногенные
- ПрогнозированиеПравить
- Распространение и историяПравить
Исследователи раскрыли тайну глубокофокусных землетрясений
Профессор Калифорнийского университета в Сан-Диего предложил механизм формирования глубокофокусных землетрясений, которые почти 100 лет не давали покоя ученым.
Геофизики долго ломали голову над тем, как на глубине более 400 километров формируются разрушительные сейсмические волны. Оказалось, во всем виновата асимметрия области фазового перехода между двумя структурами породы
Глубокофокусные землетрясения, как следует из их названия, возникают глубоко под землей — в мантии, — в области очень высоких давлений. С тех пор как эти явления впервые были зафиксированы в 1929 году, геофизики пытались выяснить, какие процессы их вызывают. Исследователи полагали, что высокое давление вызывает взрыв, который генерирует сейсмические волны.
Однако ученые тогда так и не смогли связать высокое давление со сдвиговыми сейсмическими волнами, которые, как считается, порождают глубокофокусные землетрясения. В новой работе исследовательница из Калифорнийского университета в Сан-Диего описывает возможный механизм, связывающий эти два процесса. Кроме того, ее исследование дает представление о многих других явлениях, таких как столкновение и эволюция небесных тел, так как там происходят похожие процессы.
Исследовательница использовала в своей работе фундаментальную математическую физику и механику, благодаря чему ей удалось обнаружить неустойчивости, возникающие при очень высоких давлениях. Одна нестабильность оказалась связана с формой расширяющейся области трансформирующейся породы, а другая — с ее ростом. Основной причиной глубокофокусных землетрясений геофизики считали фазовый переход от оливина к шпинели под действием высоких давлений, в результате которого объем породы сильно уменьшался, что и создавало сейсмические волны.
Чтобы расширяющиеся области этого фазового превращения из оливина в шпинель стали большими, они должны принять «блиноподобную» форму, которая минимизирует энергию, необходимую для осуществления фазового перехода и дальше в слое породы. Это режим нарушения симметрии может происходить при очень высоких давлениях, и именно этот процесс, согласно новому исследованию, создает сдвиговую деформацию, ответственную за генерацию сейсмических волн. Ранее исследователи предполагали, что сохранение симметрии сферического расширения не приведет к сдвиговым сейсмическим волнам. Они не знали, что эта симметрия может быть нарушена, а область расширения будет представлять собой не сферу, а «блин».
Исследование опубликовано в Journal of the Mechanics and Physics of Solids.
Исследователи изучили разломы внешнего подъема вокруг Марианской впадины. Они использовали данные 12 донных сейсмометров, установленных вокруг Бездны Челленджера — самой глубокой точки желоба — в период с декабря 2016 по июнь 2017 года.
Затем исследователи применили программное обеспечение EQTransformer на основе машинного обучения к сейсмическим данным. В итоге исследователи зафиксировали 1 975 землетрясений, которые произошли в регионе в течение первой половины 2017 года.
Затем места этих землетрясений точно определили с помощью двух программ моделирования — Hypoinverse и HypoDD. Авторы обнаружили, что уровень сейсмической активности во внешней области поднятия сильно варьируется. Так, один из кластеров землетрясений распространился на глубину 50 км. Это гораздо глубже, чем ученые считали возможным для этого региона.
Данные указывают на то, что эта зона субдукции Марианской впадины хорошо гидратирована. Также ученые получили важную информацию о динамике зоны субдукции.
Предсказание Эйнштейна может сбыться: как эксперимент с невидимыми атомами изменит физику
На пирамиде в Китае нашли портрет «царя предков». Он правил более 4 000 лет назад
«Это научная фантастика»: ученые создают принципиально новый тип квантовых компьютеров
![]()
Эпицентры землетрясений (1963—1998)
Колебания от землетрясений передаются в виде сейсмических волн. Землетрясения и связанные с ними явления изучает сейсмология, которая ведёт исследования по следующим основным направлениям:
- Изучение природы землетрясений: почему, как и где они происходят.
- Применение знаний о землетрясениях для защиты от них путём прогноза возможных в том или ином месте сейсмических ударов в целях строительства стойких к их воздействию конструкций и сооружений.
ОписаниеПравить
Землетрясения на Урале
«Ступеньки речных террас – особенно наглядный индикатор тектонических движений Урала – позволяют с большими подробностями проследить как давнюю, так и близкую историю подъёма гор. Общепризнанная средняя скорость роста Урала – примерно два миллиметра в столетие. Однако в некоторых местах Уральские горы растут на пять и больше миллиметров в год. Конечно, по сравнению с активно развивающимися высокосейсмичными горными системами – Тянь-Шанем, Памиром, Кавказом и другими – древний Урал не спешит. Зарегистрированных здесь землетрясений сравнительно немного. Но и этого вполне достаточно для неотложного, всестороннего изучения современных геологических процессов развития Урала и их влияния на деятельность человека.»
Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.
Вулканические землетрясения — разновидность землетрясений, при которых толчки возникают в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканические газы. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей землетрясение этого вида не представляет. Кстати, землетрясение иногда является самым опасным стихийным бедствием наряду с извержением вулкана.
Причиной землетрясения является быстрое смещение участка литосферы (литосферных плит) как целого в момент релаксации (разрядки) упругой деформации напряжённых пород в очаге землетрясения.
Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы:
- «нормальные» — 34—70 км,
- «промежуточные» — до 300 км,
- «глубокофокусные» — свыше 300 км.
К последней группе относится землетрясение, которое произошло 24 мая 2013 года в Охотском море, тогда сейсмические волны достигли многих уголков России, в том числе и Москвы. Глубина этого землетрясения достигала 600 км.
Сейсмические волны и их измерение
Скольжению пород вдоль разлома в начале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли — землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.
Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом — эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.
Скорости сейсмических волн могут достигать 10 км/с.
Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы — сейсмографы. В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие — к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).
Типы сейсмических волн
Сейсмические волны делятся на 3 типа:
- Волны сжатия, или продольные сейсмические волны (первичные; P-волны). Вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.
- Волны сдвига, или поперечные сейсмические волны (вторичные; S-волны). Заставляют частицы пород колебаться перпендикулярно направлению распространения волны.
Процессы, происходящие при сильных землетрясениях
Подводные землетрясения (моретрясения) являются причиной цунами — длинных волн, порождаемых мощным воздействием на всю толщу воды в океане, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7).
Резкое перемещение больших масс земли в очаге должно сопровождаться ударом колоссальной силы.
Измерение силы и воздействий землетрясенийПравить
Для оценки и сравнения землетрясений используются шкала магнитуд (например, шкала Рихтера) и различные шкалы интенсивности.
Шкала магнитуд. Шкала Рихтера
Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал:
- локальная магнитуда (Ml);
- магнитуда, определяемая по поверхностным волнам (Ms);
- магнитуда, определяемая по объемным волнам (Mb);
- моментная магнитуда (Mw)
Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.
Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясения на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности:
- в Европейском союзе — европейская макросейсмическая шкала (EMS),
- в России — шкала Медведева — Шпонхойера — Карника (см. ниже),
- в Японии — шкала Японского метеорологического агентства (Shindo),
- в США — модифицированная шкала Меркалли (MM):
- 1 балл (незаметное) — отмечается только специальными приборами;
- 2 балла (очень слабое) — ощущается только очень чуткими домашними животными и некоторыми людьми в верхних этажах зданий;
- 3 балла (слабое) — ощущается только внутри некоторых зданий, как сотрясение от грузовика;
- 4 балла (умеренное) — землетрясение отмечается многими людьми; возможно колебание окон и дверей;
- 5 баллов (довольно сильное) — качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;
- 6 баллов (сильное) — лёгкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;
- 7 баллов (очень сильное) — значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;
- 8 баллов (разрушительное) — разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;
- 9 баллов (опустошительное) — обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 см/с;
- 10 баллов (уничтожающее) — обвалы во многих зданиях; в остальных — серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;
- 11 баллов (катастрофа) — многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;
- 12 баллов (сильная катастрофа) — изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.
Шкала Медведева-Шпонхойера-Карника (MSK-64)
12-балльная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СНиП II-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и некоторых странах. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».
Другие виды землетрясенийПравить
Вулканические землетрясения — разновидность землетрясений, при которых толчки возникают в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканический газ которые давят снизу на поверхность Земли. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей землетрясение этого вида не представляет. Кроме того, вулканические землетрясения обычно являются предвестниками извержения вулкана, которое грозит более серьёзными последствиями.
Тектонические и техногенные
Тектонические землетрясения возникают при смещении горных плит или в результате столкновений океанической и материковой платформ. При таких столкновениях образуются горы или впадины и происходят колебания поверхности.
ПрогнозированиеПравить
Краткая инструкция для наблюдения и собирания фактов о колебаниях земной коры
- детерминистические предсказания отдельных землетрясений с точностью, достаточной для того, чтобы можно было планировать программы эвакуации, нереальны;
- по крайней мере некоторые формы вероятностного прогноза текущей сейсмической опасности, основанные на физике процесса и материалах наблюдений, могут быть оправданы.
Даже если бы точность измерений и несуществующая пока физико-математическая модель сейсмического процесса дали возможность с достаточной точностью определить место и время начала разрушения участка земной коры, магнитуда будущего землетрясения остаётся неизвестной. Дело в том, что все модели сейсмичности, воспроизводящие график повторяемости землетрясений, содержат тот или иной стохастический генератор, создающий в этих моделях динамический хаос, описываемый лишь в вероятностных терминах. Более явно источник стохастичности качественно можно описать следующим образом. Пусть распространяющийся во время землетрясения фронт разрушения подходит к участку повышенной прочности. От того, будет разрушен этот участок или нет, зависит магнитуда землетрясения. Например, если фронт разрушения пройдёт дальше, землетрясение станет катастрофическим, а если нет, останется небольшим. Исход зависит от прочности участка: если она ниже некоторого порога, разрушение пойдет по первому сценарию, а если выше, по второму. Возникает «эффект бабочки»: ничтожно малое различие в прочности или напряжениях приводит к макроскопическим последствиям, которые нельзя предсказать детерминистически, поскольку это различие меньше любой точности измерений. А предсказание места и времени землетрясения с неизвестной и, возможно, вполне безопасной магнитудой не имеет практического смысла, в отличие от расчёта вероятности того, что сильное землетрясение произойдёт.
Распространение и историяПравить
Землетрясения захватывают большие территории и характеризуются: разрушением зданий и сооружений, под обломки которых попадают люди; возникновением массовых пожаров и производственных аварий; затоплением населенных пунктов и целых районов; отравлением газами при вулканических извержениях; поражением людей и разрушением зданий обломками вулканических горных пород; поражением людей и возникновением ячеек пожаров в населенных пунктах от вулканической лавы; провалом населенных пунктов при обвальных землетрясениях; разрушением и смывом населенных пунктов волнами цунами; отрицательным психологическим воздействием.
- 1290 г. в районе залива Бохайвань (Китай) погибло около 100 тыс. чел.,
- 1556 г. в провинции Шэньси — 830 тыс. чел.,
- 1737 г. в Калькутте (Индия) — 300 тыс. чел.,
- 1908 г. в Мессине (Италия) — 120 тыс. чел.,
- 1923 г. в Токио — 143 тыс. чел.,
- 1976 г. в Таншане (Китай) — около 240 тыс. чел.,
- 1999 г. в Турции — около 40 тыс. чел.,
- 2001 г. в Индии — около 30 тыс. чел.
- 1988 г. в Армении — около 25 тыс. чел.
