Как движутся литосферные плиты Земли

Как движутся литосферные плиты Земли Землетрясения

Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?

Читайте «Хайтек» в

Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.

Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.

Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·106 атм).

Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.

Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.

Землетрясения:  Оставайтесь в безопасности: раскрываем потенциальную опасность цунами

В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.

Как устроены литосферные плиты?

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.

Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.

С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.

Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.

Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.

Как движутся литосферные плиты Земли

Карта литосферных плит

Типы столкновений литосферных плит:

Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.

Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.

Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.

Как двигаются литосферные плиты?

Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.

При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.

Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.

Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.

Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.

Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.

Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.

Модель тектоники плит на поверхности вулканического лавового озера

Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:

  • Австралийская плита
  • Антарктическая плита
  • Африканская плита
  • Евразийская плита
  • Индостанская плита
  • Тихоокеанская плита
  • Северо-Американская плита
  • Южно-Американская плита

Что ученые узнали о теории тектоники плит?

Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.

На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.

Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.

Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.

Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.

А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.

Как движутся литосферные плиты Земли

Возраст дна океанов (красный цвет соответствует молодой коре)

Какое будущее у науки тектоники?

Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.

Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.

Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.

В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.

Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.

Аборты и наука: что будет с детьми, которых родят

Земля достигнет критической отметки температуры через 20 лет

В космосе нашли гравитационные волны, меняющие пространство и время. Что это значит?

Как движутся литосферные плиты Земли

Позвонил деду, говорю — так мол и так.., есть 80 литров сока, дай Пепелац на время. Он согласился, но сказал, что треть бухла его!

Взял 80-и литровую бочку деда, 20-и литровый бутыль и аппарат, поехал в магазин и купил 6 кг сахара по мудрому наставлению синего аксакала.

По приезду домой, весь вечер чекрыжил упаковки замороженного сока, выливая, а иногда и высыпая содержимое в бочку.

Как движутся литосферные плиты Земли

Дед рассказал чего как делать. В итоге еще раз десять звонил ему за дополнительной консультацией 🧐.

Примерно треть сока вскипятил в кастрюлях, поочередно выливая кипяток в бочку с яблочным льдом. Параллельно с кипячением, разводил в соке сахар. В итоге часть сладкого сока пришлось вылить в 20 литровый бутыль, т.к. бочки просто не хватило.

В тот же вечер заказал 100 гр. белорусских сухих дрожжей на казаньэкспрессе, чтоб долго не ждать и не мотаться по городу в их поиске. Уже на следующий день внес дрожжи в затор (не церемонился, все 100 граммов бахнул), предварительно померив температуру яблочной жижи (на тот момент была 29 градусов).

Подождал 8 дней и крепкий сидр был готов, но пить я его не стал (во всяком случае весь).

Как движутся литосферные плиты Земли

За один вечер сделал первый перегон. В две заправки этот Титан управился с 80-ю литрами браги.

Затем наступил самый сложный момент — вторая перегонка!

В интернете нашел калькулятор самогонщика, который не тупил и не раздражал (тык сюда, если кому понадобится, там всё есть, и как водой разбавлять, и как вторую перегонку делать).

Как движутся литосферные плиты Земли

Что хочу отметить: когда перегонял, ванную наполнил офигенный густой яблочный аромат!

Что в итоге: 14 литров ароматного яблочного дистиллята и 3 довольные красные морды — моя, деда и моего кореша!

Точно прогнозировать землетрясения люди пока не научились, хотя работы в этом направлении ведутся постоянно. Предсказать время землетрясения в Турции и Сирии 6 февраля было практически невозможно, поскольку оно началось сразу с крупных сейсмических толчков. Об этом в интервью RT рассказал профессор, доктор географических наук, заведующий кафедрой геоморфологии и палеогеографии МГУ Андрей Бредихин. Землетрясение не стало неожиданностью для специалистов, поскольку Турция находится в зоне высокой сейсмической активности. На территории России тоже есть ряд таких зон, напомнил учёный. Все опасные районы нанесены на специальные карты сейсмической активности, которыми необходимо руководствоваться при строительстве зданий.

— Андрей Владимирович, учёные установили, что недавнее землетрясение в Турции привело к сдвигу литосферных плит на 3 м. По данным специалистов, Аравийская плита сдвинулась примерно на 3 м по отношению к Анатолийской плите. Бывали ли прежде настолько заметные подвижки плит?

— Горизонтальное перемещение литосферных плит, уходящих основаниями в верхнюю мантию, — доказанное явление. Однако это всегда не разовый, единовременный сдвиг, а плавный процесс, во время которого разные участки плит перемещаются с разной скоростью. Во время землетрясения и следующих за ним афтершоков (повторных толчков. — RT) происходит серия локальных горизонтальных и вертикальных деформаций, в результате происходят сдвиги литосферных плит в региональном масштабе. Можно сказать, что Аравийская плита сдвинулась относительно Анатолийского блока, но оценивать реальные перемещения пока преждевременно.

— Насколько типичны для этого региона землетрясения такой силы?

— На территории Турции есть две зоны активных разломов. Первый, Северо-Анатолийский разлом, проходит по южному макросклону Понтийского хребта на севере, он тянется с запада на восток страны. Второй — на востоке, протягивается от Средиземного моря через районы городов Искендерун, Газиантеп и далее на северо-восток. Движение Аравийской плиты с юга на север приводит к постоянным подвижкам. В зоне этих разломов постоянно фиксируются однотипные сдвиговые деформации и часто происходят мощные землетрясения.

Так, в 1999 году в западной части Турции произошло очень сильное землетрясение магнитудой 7,7. В 1939, 1944 годах в этом же районе были землетрясения магнитудой 7,5 и т. д. Есть исторические свидетельства о разрушительных землетрясениях на территории современной Турции начиная с 900-х годов нашей эры, много таких событий отмечалось, например, в XVII веке. В последние годы в научных исследованиях часто встречались прогнозы, согласно которым мощное землетрясение ожидалось на западе страны, в районе Стамбула. Однако оно произошло на востоке страны. Кстати сказать, где оно и должно было произойти.

Как движутся литосферные плиты Земли

В целом всем специалистам было ясно, что в Турции должно произойти землетрясение магнитудой выше 7, вопрос был только в том, когда именно оно произойдёт.

— А известна хотя бы примерная периодичность, с которой это происходит?

— Рост напряжения в земной коре происходит постоянно, в какие-то моменты оно находит выход в виде сильных сейсмических толчков. Традиционно считается, что одно крупное землетрясение в сейсмически опасном районе происходит примерно раз в 200—250 лет. На практике это может происходить намного чаще — мы видим это на примере Турции. Если бы мы могли точно прогнозировать время землетрясений, не было бы таких трагедий, как та, что произошла в Турции.

Также по теме

Как вулкан землетрясение остановил: учёные о взаимодействии двух стихийных бедствий

— Сейчас разрабатываются приложения для смартфонов для оповещения о землетрясениях — они фиксируют самые первые толчки с помощью встроенных в телефон акселерометров и сообщают об опасности. Как вы думаете, могут ли такие мобильные технологии помочь уменьшить число жертв в случае землетрясения?

— Да, в смартфоны могут быть установлены такие датчики, которые могут отследить микроколебания земли. Но проблема в том, что в техногенной городской среде такие микроколебания происходят постоянно из-за метро, движения грузового транспорта и т. д. И в таких условиях подобные датчики будут постоянно срабатывать даже без угрозы землетрясения. Отделить же антропогенный сейсмический шум от истинных глубинных толчков личными гаджетами пока нет возможности.

— Были ли какие-то особенности у землетрясений в Турции и Сирии?

— Научных данных пока мало, но если судить по циркулирующей в СМИ информации, то одно из самых необычных явлений наблюдается в районе турецкого города Искендерун, который начал затапливаться после землетрясения. То есть произошло опускание участков суши, что и привело к подтоплению прибрежной полосы.

— 6 февраля сейсмические толчки отмечались по всей планете: их фиксировали в районе Курильских островов, в Нью-Йорке, на Байкале — всего было зафиксировано более 200 землетрясений. Насколько типична такая ситуация, когда сейсмическая волна прокатывается по всей планете?

— Да, это типичная ситуация. Например, когда в 1977 году в Румынии, в горах Вранча (Южные Карпаты) произошло крупное землетрясение, толчки докатились до Москвы — в квартирах раскачивались люстры и гремела посуда. Так что да, когда происходят крупные землетрясения, толчки могут распространяться на очень большие расстояния.

Кроме того, надо учитывать, что смещается фокус внимания СМИ и общества, все начинают пристально следить за новостями о подземных толчках. Например, в районе Байкала сейсмические толчки отмечаются постоянно, они фиксировались этим летом, например, а также осенью. Это обычное явление для этой суперсейсмической зоны, тянущейся в сторону Монголии. Но тогда об этом никто не писал, сейчас же люди обратили внимание на все события такого рода, происходящие на планете.

При этом далеко не всегда землетрясения сопровождаются такими разрушениями и жертвами, как сейчас в Турции.

Например, буквально недавно, 9 января, землетрясение магнитудой 7,6 произошло у берегов Индонезии, в результате погибли люди, но жертвы исчислялись не тысячами, а десятками.

Как движутся литосферные плиты Земли

  • Затопление улиц в турецком городе Искендерун после землетрясения
  • globallookpress.com

В Турции наложилось сразу несколько факторов — высокая плотность населения и очень низкое качество строительства, «на честном слове», как говорят. Кроме того, землетрясение произошло рано утром, когда люди спали в своих домах.

— Насколько на сегодняшний день науке понятна природа землетрясений?

— Принципиально она понятна — есть физические, расчётные модели. Литосферные плиты движутся постоянно, на их стыках копится напряжение, которое периодически находит разрядку в виде землетрясений — когда превышается предел упругости горных пород в земной коре.

Нелинейные процессы: российский геолог — о прогнозировании землетрясений и глубинной структуре Земли

Кстати, эпицентр землетрясения 6 февраля в Турции и Сирии находился близко к поверхности, в земной коре. Такие землетрясения обычно сильно влияют на рельеф местности — рисунок гидросети, речных русел, крупные разрывы на поверхности. Так что у этого события вполне могут быть и другие географические последствия, которые пока просто не успели зафиксировать — сейчас не до этого.

— Сейчас в турецких СМИ и соцсетях распространяются слухи об искусственном характере землетрясения. Как можно прокомментировать такие гипотезы с научной точки зрения?

— Спровоцировать землетрясение технически возможно — если произвести подземные ядерные взрывы большой мощности. Такие взрывы могут вызвать дополнительное напряжение в земной коре, что может стать спусковым крючком — триггером для землетрясения, если оно уже назревало.

Однако почвы под такими разговорами применительно к землетрясению 6 февраля нет, поскольку искусственные взрывы всегда фиксируются приборами в различных сейсмических центрах. Это невозможно не заметить.

Как движутся литосферные плиты Земли

— Могут ли зоны сейсмической активности смещаться в глобальном масштабе — какие-то районы «успокаиваться», а какие-то, наоборот, «пробуждаться»?

— Да, периодичность в активности тех или иных тектонических участков действительно отмечается. В отдельные периоды активизируется то Байкальский рифт (крупный тектонический разлом в земной коре. — RT), то, к примеру, Рейнский грабен. Кстати, он расположен в центре Европы — это тоже довольно сейсмически активная зона. Или, например, в США ожидают страшный взрыв Йеллоустонского макровулкана, этим постоянно пугают общественность. Он расположен тоже в сейсмически активной зоне, просто сейчас там не очень интенсивны тектонические процессы.

Более 31 тыс. погибших: в Турции продолжается ликвидация последствий землетрясения

— Помимо Байкала, какие ещё есть сейсмически активные зоны в России? Например, звучал прогноз, что аналогичное турецко-сирийскому землетрясение может произойти в будущем в Крыму.

— Тут не надо даже гадать, поскольку есть сейсмическое районирование России. Не только Крым, но и все горные сооружения России, включая старый и тихий Урал, относятся к зонам тектонической и в том числе сейсмической активности. Кстати, старые в геологическом смысле горы обычно находятся в зоне семибалльной сейсмичности. Про Дальний Восток можно и не упоминать, о сейсмической активности Камчатки наслышаны все. При этом Кавказ входит вообще в зону девяти- или десятибалльной активности. Все эти данные должны служить руководством для строителей, здания должны возводиться в соответствии с ними. По крайней мере, строители точно знают об этих предписаниях, исполняют или нет — это другой вопрос.

Возвращаясь к Крыму, отмечу, что, согласно последней редакции карты Общего сейсмического районирования России, его южное побережье входит, как и Кавказ, в 9—10-балльную зону сейсмической активности, центральные районы — в 8—9-балльную, а северный — в 7-балльную.

Как движутся литосферные плиты Земли

— Вопрос, который мучает всех: можно ли прогнозировать крупные землетрясения, чтобы они не уносили столько человеческих жизней?

— К сожалению, пока это невозможно. Хотя такие разработки ведутся. Например, учёные пытаются научиться узнавать о скором землетрясении благодаря системам GPS-отслеживания высотного положения земной поверхности. Дело в том, что Земля «дышит», её поверхность постоянно колеблется с разной скоростью из-за протекающих в недрах процессов. Амплитуда колебаний измеряется миллиметрами, поэтому мы этого не замечаем. Можно попробовать фиксировать участки, где планета начинает вдруг «дышать» более часто и «глубоко» из-за начинающихся глубинных возмущений.

Сейсмолог Татевосян назвал маловероятным рост числа мощных землетрясений в ближайшие годы

Плюс никто не отменяет и традиционные геофизические методы, позволяющие отследить первые микротолчки, которые предшествуют сильным колебаниям. Правда, так бывает не всегда — например, 6 февраля в Турции и Сирии землетрясение началось резко, без предупреждающих толчков.

Есть и разные косвенные методы — например, можно отслеживать уровень грунтовых вод, поскольку внутренние колебания в земной коре отражаются на водных горизонтах.

И последнее — животные часто заранее реагируют на приближающееся землетрясение и покидают дом. Они чувствуют микроколебания на определённой частоте, это известный факт. Так что если вы живёте в сейсмически опасной зоне, то завести домашних питомцев — хорошая идея.

Когда вы идёте по земле, она кажется очень твёрдой и устойчивой, однако наша планета постоянно движется, она вращается вокруг Солнца, вращается вокруг своей оси, а еще земля, по которой мы ходим, тоже движется.

Давайте сегодня об этом и узнаем.

Начнём с того, что Земля не всегда была такой, как мы видим её сегодня. Около 300 миллионов лет назад у неё не было семь континентов, а существовал только один гигантский суперконтинент Пангея.

Постепенно Пангея распалась на Лавразию и Гондвану. Затем они тоже распались на более мелкие части и постепенно все континенты медленно переместились на свои нынешние места.

Эту идею движения континентов предложил немецкий учёный Альфред Вегенер в 1912 году и назвал ее теорией дрейфа материков. Главным доказательством своей теории он считал то, что на географических картах очертания восточного побережья Южной Америки почти точно совпадает с очертанием западного побережья Африки. Хотя и задолго до него некоторые учёные обращали внимание на такую особенность очертания береговых линий.

Однако Вегенер ещё указал на окаменелости похожих животных на разных материках, а также растений.

Они просто не могли перемещаться через огромные океаны.

Также он указал на многочисленные сходства в геологическом строении континентов, но Вегенер не смог полностью объяснить, почему именно Пангея распалась.

Поэтому позже теория континентального дрейфа была заменена теорией о тектонике плит. Это звучит сложно и сверхнаучно, но на самом деле это довольно просто.

Наша планета состоит из нескольких слоёв: земная кора, мантия, внешнее ядро и внутреннее ядро. Верхний слой, который состоит из земной коры и части верхней мантии, называется литосферой. Эта литосфера не цельная, а разбита на большие куски — тектонические плиты. Каждая плита разного размера, формы и толщины. Но вместе они складываются как пазл.

Есть семь крупных тектонических плит:

  • Тихоокеанская,
  • Северо-Американская,
  • Евразийская,
  • Африканская,
  • Антарктическая,
  • Индо-Австралийская
  • Южно-Американская.

А еще есть десятки средних плит и множество мелких литосферных плит.

В состав этих плит входят материки и прилегающие части океанов. Под литосферой находится слой горячей жидкой расплавленной породы, который называется астеносфера.

Почему он жидкий?

Потому что в недрах Земли действуют мощные силы, заставляющие мантию испытывать тепловую конвекцию. Давайте возьмём кастрюлю с супом и включим газ. Снизу суп нагревается и поднимается вверх, там остывает и снова опускается вниз. Похожий процесс управляет и мантией.

Причем он идёт непрерывно, из-за чего тектонические плиты скользят по слою мантии. В этом и есть главный смысл теории тектоники плит!

Т.е. двигаются не отдельные континенты по океану, как предполагал Вегенер, а литосферные плиты, покрывающие всю Землю, по астеносфере.

Поскольку все плиты плотно прилегают друг к другу, движение любой из них действует на окружающие плиты, заставляя и их постепенно перемещаться.

Они могут двигаться навстречу друг другу.

Здесь возможно три варианта:

Первый вариант — столкновение двух плит континентальной коры.

Поскольку обе плиты примерно одинаковой плотности, ни одна из них не хочет уступать. Поэтому они сгибаются и деформируются, образуя горы.

Например, десятки миллионов лет назад столкновение Индо-Австралийской и Евразийской плит образовало Гималаи.

Однако эти плиты до сих пор продолжают сталкиваться, поэтому Гималаи становятся выше на несколько миллиметров каждый год.

Второй вариант — столкновение океанической плиты с материковой.

Более тяжёлая океаническая плита погружается под материковую, достигает мантии и переплавляется в магму, а более лёгкая материковая плита поднимается вверх. В результате этого образуются вулканы.

Третий вариант — столкновение двух океанических плит.

Одна из плит заползает под другую. Формируются глубоководные желоба. Это длинные, узкие и очень глубокие впадины. Например, Марианская впадина — самая глубокая часть океана — образована схождением Тихоокеанской и Филиппинской плит.

Также плиты могут отдаляться друг от друга.

Это создаёт разрыв в середине, который постепенно становится огромным расколом, и позволяет магме подниматься к поверхности.

Магма застывает, образуя новую земную кору на краях плит. В результате под водой образуются горные хребты, т.е. трещины прямо посередине дна океана.

Например, Срединно-Атлантический хребет, пролегающий по Атлантическому океану, а на суше образуются рифты — крупные разломы в земной коре.

Например, Великая рифтовая долина в Африке.

Если плиты там продолжат расходиться, через миллионы лет Восточная Африка отделится от континента и сформирует новый континент.

Наконец, последний способ сдвига плит — это трансформный разлом

Когда две плиты скользят мимо друг друга в противоположных направлениях с разной скоростью. Из-за трения создаётся напряжение, которое нарастает, и происходит землетрясение.

Сегодня континенты продолжают свое движение, правда, очень медленно, так медленно, что никто на Земле не может этого почувствовать — всего на несколько сантиметров каждый год.

Примерно с такой же скоростью растут наши ногти.

Для того чтобы земная кора сместилась на значительную территорию, требуются миллионы лет.

Учёные считают, что в будущем континенты снова объединятся в суперконтинент и даже придумали ему название — Пангея Ультима.

Теория тектоники плит — одна из самых важных теорий в истории науки о Земле, потому что она даёт рассуждения о причинах землетрясений, вулканов и постоянно меняющейся поверхности нашей планеты.

Теперь и вы знаете об этой теории.

Основные положения тектоники литосферных плит

Основные положения тектоники плитДоказательства реальности механизма тектоники литосферных плит

Тектоника плит (plate tectonics) — современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной  теории тектоники плит. Основные положения тектоники плит  сформулированы в 1967-68 группой американских геофизиков — У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит  слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например,  Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).

Строение континентального рифта

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная — континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Модель процесса субдукции

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого.

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей.  При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются  в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла  идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет  горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок — Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно  больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке  – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Принципиальная схема мантийной конвекции

Альтернативные схемы мантийной конвекции

Мантийная конвекция и геодинамические процессы

https://youtube.com/watch?v=9khkRFIQf5E%3Frel%3D0

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок  — Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Рисунок  – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной  плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Полосовые магнитные аномалии

​Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок  — Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок — Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

Оцените статью
Землетрясения