- Wonderful-planet — Литосферные плиты.
- Чем сложена литосфера.
- Основные литосферные плиты Земли.
- Движение литосферы Земли.
- Литосферные плиты России.
- Уважаемые посетители! Если Вы не нашли необходимой информации или считаете ее неполной, напишите ниже в комментариях, и статья будет дополнена соответственно Вашему желанию.
- Океаническая литосфера
- Современные литосферные плиты и их расположениеПравить
- Плитнотектонические процессы в прошлые геологические эпохиПравить
- Сдвиговые перемещения по трансформным разломам
- Некоторые доказательства реальности механизма тектоники литосферных плит
- Движение литосферных плит. Крупные литосферные плиты. Названия литосферных плит
- Появление гипотезы
- Основные положения
- Почему происходит движение литосферных плит?
- Исследования
- Расширение возможностей для исследования
- Современная картина
- Геодинамика
- Подъем глыб
- Аномальная мантия
- Ловушки
- Описание процессов
- Горизонтальные смещения
- Особенности процесса
- Слои литосферы
- Конвергенция
- Типы столкновений литосферных плитПравить
- Химический состав
- Теория литосферных плит на карте мира
- Основатель теории литосферных плит
- Карта литосферных плит мира
- Самая большая литосферная плита
- Что происходит при движение плит
- Тектоника как наука
- ИзучениеПравить
- Características principales
- Скорость движения литосферных плитПравить
- Развитие представлений о глобальной тектоникеПравить
Wonderful-planet — Литосферные плиты.
Подробности Вы в разделе: Литосфера
Литосферные плиты — это крупные блоки земной коры и части верхней мантии, из которых сложена литосфера.
Чем сложена литосфера. — Основные литосферные плиты. — Карта литосферы Земли. — Движение литосферы. — Литосферные плиты России.
Чем сложена литосфера.
Литосфера сложена из крупных блоков, называемых литосферными плитами. Литосферные блоки в поперечнике составляют 1-10 000 км, а толщина их варьируется от 60 до 100 км. Большая часть литосферных блоков включает в себя как материковую земную кору, так и океаническую. Хотя бывают случаи, когда литосферная плита состоит исключительно из океанической коры (Тихоокеанская плита).
Литосферные плиты состоят из сильно смятых в складки магматических, метаморфизированных и гранитных пород, лежащих у основания, и 3-4 километрового слоя осадочных пород сверху.
В основе каждого материка лежит одна или несколько древних платформ, вдоль границы которых проходит цепь горных хребтов. Внутри платформы рельеф обычно представлен плоскими равнинами с отдельными горными хребтами.
Границы литосферных плит отличаются высокой тектонической, сейсмической и вулканической активностью. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные. Очертания литосферных плит постоянно меняются. Крупные раскалываются, мелкие спаиваются между собой. Некоторые плиты могут утонуть в мантии Земли.
Как правило, в одной точке земного шара сходится только три литосферные плиты. Конфигурация, когда в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.
Основные литосферные плиты Земли.
Большая часть земной поверхности, около 90%, покрыта 14 основными литосферными плитами. Это:
- Австралийская плита
- Антарктическая плита
- Аравийский субконтинент
- Африканская плита
- Евразийская плита
- Индостанская плита
- Плита Кокос
- Плита Наска
- Тихоокеанская плита
- Плита Скотия
- Северо-Американская плита
- Сомалийская плита
- Южно-Американская плита
- Филиппинская плита
Рис 1. Карта литосферных плит Земли.
Движение литосферы Земли.
Литосферные плиты постоянно движутся относительно друг друга со скоростью до нескольких десятков сантиметров в год. Данный факт был зафиксирован фотоснимками, сделанными с искусственных спутников Земли. В настоящее время известно, что Американская литосферная плита движется навстречу Тихоокеанской, а Евразийская сближается с Африканской, Индо-Австралийской, а также с Тихоокеанской. Американская и Африканская литосферные плиты медленно расходятся.
Литосферные плиты – основные составляющие литосферы – лежат на пластичном слое верхней мантии – астеносфере. Именно ей принадлежит главная роль в движении земной коры. Вещество астеносферы в результате тепловой конвекции (передачи тепла в виде струй и потоков) медленно «течет», увлекая за собой блоки литосферы и вызывая их горизонтальные перемещения. Если же вещество астеносферы поднимается или опускается, это приводит к вертикальному движению земной коры. Скорость вертикального движения литосферы гораздо меньше горизонтального – всего до 1-2 десятков миллиметров в год.
При вертикальном движении литосферы над восходящими ветвями конвективных течений астеносферы происходят разрывы литосферных плит и образуются разломы. В разломы устремляется лава и, остывая, наполняет пустые полости толщами магматических пород. Но затем нарастающее растяжение движущихся литосферных плит снова приводит к разлому. Так, постепенно нарастая в местах разломов, литосферные плиты расходятся в разные стороны. Эта полоса горизонтального расхождения плит получила название рифтовой зоны. По мере удаления от рифтовой зоны литосфера остывает, тяжелеет, утолщается и, как следствие, проседает глубже в мантию, образуя области понижения рельефа.
Зоны разломов наблюдаются как на суше, так и в океане. Самый крупный материковый разлом длиной более 4000 км и шириной 80-120 км находится в Африке. На склонах разлома находится большое количество действующих и спящих вулканов.
В это время на противоположной от разлома границе происходит столкновение литосферных плит. Столкновение это может протекать по-разному в зависимости от видов сталкивающихся плит.
- Если сталкиваются океаническая и материковая плиты, то первая погружается под вторую. При этом возникают глубоководные желоба, островные дуги (Японские острова) или горные хребты (Анды).
- Если сталкиваются две материковые литосферные плиты, то на этом месте края плит сминаются в складки, что ведет к образованию вулканов и горных хребтов. Таким образом на границе Евразийской и Индо-Австралийской плиты возникли Гималаи. Вообще, если в центре материка имеются горы, это значит, что когда-то это было местом столкновения двух спаявшихся в одну литосферных плит.
Таким образом, земная кора находится в постоянном движении. В её необратимом развитии подвижные области — геосинклинали — превращаются путём длительных преобразований в относительно спокойные области — платформы.
Литосферные плиты России.
Россия расположена на четырех литосферных плитах.
- Евроазиатская плита – большая часть западной и северной части страны,
- Северо-Американская плита – северо-восточная часть России,
- Амурская литосферная плита – юг Сибири,
- Охотоморская плита – Охотское море и его побережье.
Рис 2. Карта литосферных плит России.
В строении литосферных плит выделяются относительно ровные древние платформы и подвижные складчатые пояса. На стабильных участках платформ расположены равнины, а в области складчатых поясов находятся горные хребты.
Рис 3. Тектоническое строение России.
Россия расположена на двух древних платформах (Восточно-Европейской и Сибирской). В пределах платформ выделяются плиты и щиты. Плита – это участок земной коры, складчатая основа которой покрыта слоем осадочных пород. Щиты, в противоположность плитам, имеют очень мало осадочных отложений и только тонкий слой почвы.
В России выделяют Балтийский щит на Восточно-Европейской платформе и Алданский и Анабарский щиты на Сибирской платформе.
Рис 4. Платформы, плиты и щиты на территории России.
Избранные мировые новости.
Уважаемые посетители! Если Вы не нашли необходимой информации или считаете ее неполной, напишите ниже в комментариях, и статья будет дополнена соответственно Вашему желанию.
О том, что Пангея $ 135$ млн. лет тому назад распалась на Лавразию и Гондвану, утверждал еще А. Вегенер. Его гипотеза была названа мобилизмом. Гипотеза стала теорией во второй половине прошлого века. Движение плит литосферы было зафиксировано из космоса.
Земную кору образуют $15$ литосферных плит, из них $ 6$ плит являются самыми крупными.
К ним относятся:
- Евразийская плита;
- Североамериканская плита;
- Южноамериканская плита;
- Австралийская плита;
- Антарктическая плита;
- Тихоокеанская плита.
Скорость движения плит по разным оценкам составляет от $1$ мм-1$8$ см в год.
Относительные перемещения плит могут быть трех типов:
- Дивергенция;
- Конвергенция;
- Сдвиговые перемещения.
Дивергенция или расхождение выражается рифтингом и спредингом.
Раздвижение плит происходит вдоль дивергентных границ. Эти границы в рельефе планеты представлены рифтами, где преобладают деформации растяжения. Кора имеет пониженную мощность, а тепловой поток максимален, в результате происходит интенсивная вулканическая деятельность. В зависимости от того, где находится дивергентная граница, зависит дальнейшее развитие – если граница на континенте, то формируется континентальный рифт. В дальнейшем он может превратиться в океанический бассейн. Рифты на океанической коре приурочены к центральным частям срединно-океанических хребтов, где образуется новая океаническая кора. Её образование происходит за счет того, что из астеносферы поступает магматический базальтовый расплав.
Китайский язык для начинающих
Научись писать, понимать и воспроизводить текстовую информацию
Образование новой океанической коры за счет поступления мантийного вещества получило название спрединг
Срединно-океанические хребты делят на быстро-спрединговые – скорость раздвижения плит составляет $8$-$16$ см в год и медленно-спрединговые. Последние имеют отчетливо выраженную центральную депрессию. Это рифт глубиной $4$-$5$ тыс. метров. Образовавшийся рифт становится началом раскола континента. Постепенно формируется линейная впадина, имеющая глубину сотни метров и ограниченная серией сбросов.
Дальнейшее развитие событий может идти по двум вариантам:
- Прекращение расширения рифта, заполнение его осадочными породами и превращение в авлакоген;
- Раздвижение континентов продолжается и начинается формирование океанической коры.
Авлакоген – это линейная подвижная зона внутри платформы
«Теория литосферных плит» 👇
Океаническая литосфера
Данная разновидность земной оболочки существенно отличается от ее материковой части. Связано это с тем, что тесно переплетаются границы литосферных блоков и гидросферы, а в некоторых ее частях водное пространство распространено за пределы поверхностного слоя литосферных плит. Это касается донных разломов, впадин, пещеристых образований различной этиологии.
Именно поэтому плиты океанического типа имеют свою структуру и состоят из следующих слоев:
- морские осадки, которые имеют общую толщину не менее 1 км (в глубоководных участках океана могут отсутствовать вовсе);
- вторичный слой (отвечает за распространение средних и продольных волн, движущихся со скоростью до 6 км/сек., принимает активное участие в передвижении плит, чем провоцирует землетрясения различной мощности);
- нижний слой твердой оболочки земного шара в области расположения океанического дна, который в основном сложен из габбро и граничит с мантией (средняя активность сейсмических волн составляет от 6 до 7 км/сек.).
Также выделяют переходный тип литосферы, расположенный в области океанической почвы. Он характерен для островных зон, сформировавшихся дугообразно. В большинстве случаев их появление связано с геологическим процессом движения литосферных плит, которые наслаивались друг на друга, образовывая такого рода неровности.
Важно!
Подобную структуру литосферы можно встретить на окраинах Тихого океана, а также в некоторых частях Черного моря.
Современные литосферные плиты и их расположениеПравить
Более 90% литосферы образуют 7 крупнейших плит: Евразийская, Африканская, Северо-Американская, Южно-Американская, Антарктическая, Индо-Австралийская, Тихоокеанская. Из них Тихоокеанская является наибольшей по площади и единственной полностью океанской плитой.
К крупным плитам относятся: Кокос, Наска, Карибская, Скотия, Аравийская, Филиппинская, Каролинская, Иберийская, Анатолийская, Охотоморская, Амурская. В стадии обсуждения находится выделение плит Сомалийской и Берингии.
К микроплитам (имеющим как правило несколько сотен км. в поперечнике) относятся: Горда, Хуан де Фука, Эксплорер и др. Предположительно микроплит находятся в районе Каспия и моря Бисмарка. Кроме того, предположительно микроплиты располагаются в зоне тройных сочленений (в районах о.Пасхи, о.Родригес, Галапагосских и Азорских о-вов. и др.)
Плитнотектонические процессы в прошлые геологические эпохиПравить
Тектоника плит происходила на Земле со среднеархейской эпохи, когда в основном завершился процесс дифференциации земной коры на лёгкую — континентальную и тяжёлую — океанскую.
Точная картина перемещения плит за последние 160 — 180 млн. лет восстановлена с помощью изучения линейных магнитных аномалий океанского ложа. Более древние аномалии обычно не сохраняются и палеотектоническая реконструкция с помощью палеомагнитного метода является затруднительной. Он осуществляется совместно с палеобиогеографическими и палеокиматологическими исследованиями. Главными признаками развития плитнотектонических механизмов далёкого прошлого являются геологические проявления субдукции и спрединга — вулканические дуги, вулкано-плутонические комплексы и офиолиты.
Характер и интенсивность тектоники плит в фанерозое и протерозое обусловили последовательное образование и распад нескольких суперконтинентов и в свою очередь зависели от них: в эпохи существования суперконтинентов выражения глобальной тектоники были менее яркими вследствие меньшей протяжённости зон спрединга и субдукции.
В раннепротерозойскую и архейскую эпохи характер тектонических процессов отличился от современного более значительным количеством более мелких плит и большей протяжённостью оси спрединга. Существование плитнотектонического механизма в архее было обосновано в результате изучения зеленокаменных поясов среднего и позднего архея, обнаружившего большое сходство с более строения последних с более молодыми офиолитами.
Сдвиговые перемещения по трансформным разломам
Параллельное движение плит и их разная скорость приводит к трансформным разломам, которые представляют собой сдвиговые нарушения. Они очень редки на материках и широко распространены в океанах. В океане эти разломы направлены перпендикулярно срединно-океаническим хребтам и разбивают их на сегменты. На таких участках практически постоянны землетрясения и горообразование. Надвиги, складки, грабены формируются вокруг разлома. На материках такие сдвиговые границы довольно редки и достаточно активным примером такой границы является разлом Сан-Андреас. Он отделяет Тихоокеанскую плиту от Североамериканской плиты. Сан-Андреас тянется на $800$ миль и относится к самым сейсмоактивным районам планеты. Смещение плит здесь относительно друг друга происходит на $0,6$ см в год, а землетрясения, которые возникают один раз в $22$ года, имеют магнитуду более $6$ единиц. В зоне повышенной опасности находится город Сан-Франциско и большая часть бухты одноименного названия, потому что они находятся в непосредственной близости от разлома.
Движение плит объясняется мантийной конвекцией, которая является основной их причиной. Конвекция образуется благодаря мантийным теплогравитационным течениям, а источником энергии для них служит разность температуры между центральными областями Земли и частями, близкими к поверхности. Породы, нагретые в центральных зонах, начинают расширяться, уменьшается их плотность и, уступая место более холодным, они всплывают. В результате непрерывности этого процесса возникают замкнутые упорядоченные конвективные ячейки. В её верхней части течение вещества почти горизонтальное, что и определяет перемещение плит.
Если говорить в общем, то под зонами дивергентных границ располагаются восходящие ветви конвективных ячей, а под зонами конвергентных границ – нисходящие ветви и основной причиной движения литосферных плит является «волочение» конвективными течениями.
Можно назвать еще ряд факторов, действующих на плиты:
- Гравитационное «соскальзывание» литосферной плиты;
- Затягивание в зонах субдукции холодной океанской плиты в горячую;
- Гидравлическое расклинивание базальтами в зонах срединно-океанических хребтов.
Литосферные плиты состоят из океанских и континентальных частей. Ученые считают, что присутствие в составе плиты континента должно «тормозить» движение всей плиты. Так оно и есть, быстрее движутся чисто океанские плиты – Наска, Тихоокеанская. Медленнее движутся плиты, в составе которых большую площадь занимают континенты – Евразийская, Североамериканская, Южноамериканская, Антарктическая, Африканская.
Условно выделяют две группы мезанизмов, которые приводят в движение плиты:
- Силы мантийного «волочения»;
- Силы, приложенные к краям плит.
Хотя для каждой плиты движущие механизмы оцениваются индивидуально. Перемещения литосферных плит можно описать на основе теоремы Эйлера. Его теорема утверждает, что у любого вращения трехмерного пространства есть ось и вращение можно описать такими параметрами как координаты оси вращения и угол поворота. При помощи теоремы можно реконструировать положение континентов в прошлые геологические эпохи. Ученые пришли к выводу, анализируя данные о перемещении континентов, что каждые $400$-$600$ млн. лет они снова объединяются в единый суперконтинент, который в дальнейшем подвергается распаду.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Континент может быть лишь видимой частью одной или нескольких тектонических плит. Тектонические плиты жесткие, бетонные и твердые, но они бывают разной формы, неровности и толщины. Они не совпадают с формой континентов, которую мы изображаем на карте, потому что один и тот же континент может быть лишь видимой частью (не покрытой водой) одной или даже нескольких смежных тектонических плит.
Известно много тектонических плит, из которых насчитывается около 15 крупных (главных) плит и около 42 второстепенных плит. Процессы в недрах Земли являются результатом динамики тектонических плит. Поскольку сердце нашей планеты жидкое и состоит из различных расплавленных металлов, тектонические плиты образуют внешние и более холодные слои планеты и, следовательно, более прочные. При извержении подземной магмы (подобно вулкану) на поверхность выбрасываются новые химические элементы.
Некоторые доказательства реальности механизма тектоники литосферных плит
Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.
Рисунок — Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.
Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)
Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7
Полосовые магнитные аномалии
Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.
Рисунок — Образование полосовых магнитных аномалий при спрединге.
Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.
Рисунок — Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).
Движение литосферных плит. Крупные литосферные плиты. Названия литосферных плит
Литосферные плиты Земли представляют собой огромные глыбы. Их фундамент образован сильно смятыми в складки гранитными метаморфизированными магматическими породами. Названия литосферных плит будут приведены в статье ниже. Сверху они прикрыты трех-четырехкилометровым «чехлом». Он сформирован из осадочных пород. Платформа имеет рельеф, состоящий из отдельных горных хребтов и обширных равнин. Далее будет рассмотрена теория движения литосферных плит.
Появление гипотезы
Теория движения литосферных плит появилась в начале двадцатого столетия. Впоследствии ей суждено было сыграть основную роль в исследованиях планеты. Ученый Тейлор, а после него и Вегенер, выдвинул гипотезу о том, что с течением времени происходит дрейф литосферных плит в горизонтальном направлении. Однако в тридцатые годы 20-го века утвердилось другое мнение. Согласно ему, перемещение литосферных плит осуществлялось вертикально. В основе этого явления лежал процесс дифференциации мантийного вещества планеты. Оно стало называться фиксизмом. Такое наименование было обусловлено тем, что признавалось постоянно фиксированное положение участков коры относительно мантии. Но в 1960-м году после открытия глобальной системы срединно-океанических хребтов, которые опоясывают всю планету и выходят в некоторых районах на сушу, произошел возврат к гипотезе начала 20-го столетия. Однако теория обрела новую форму. Тектоника глыб стала ведущей гипотезой в науках, изучающих структуру планеты.
Основные положения
Было определено, что существуют крупные литосферные плиты. Их количество ограниченно. Также существуют литосферные плиты Земли меньшего размера. Границы между ними проводят по сгущению в очагах землетрясений.
Названия литосферных плит соответствуют расположенным над ними материковым и океаническим областям. Глыб, имеющих огромную площадь, всего семь. Наибольшие литосферные плиты – это Южно- и Северо-Американские, Евро-Азиатская, Африканская, Антарктическая, Тихоокеанская и Индо-Австралийская.
Глыбы, плывущие по астеносфере, отличаются монолитностью и жесткостью. Приведенные выше участки – это основные литосферные плиты. В соответствии с начальными представлениями считалось, что материки прокладывают себе дорогу через океаническое дно. При этом движение литосферных плит осуществлялось под воздействием невидимой силы. В результате проведенных исследований было выявлено, что глыбы плывут пассивно по материалу мантии. Стоит отметить, что их направление сначала вертикально. Мантийный материал поднимается под гребнем хребта вверх. Затем происходит распространение в обе стороны. Соответственно, наблюдается расхождение литосферных плит. Данная модель представляет океаническое дно в качестве гигантской конвейерной ленты. Она выходит на поверхность в рифтовых областях срединно-океанических хребтов. Затем скрывается в глубоководных желобах.
Расхождение литосферных плит провоцирует расширение океанических лож. Однако объем планеты, несмотря на это, остается постоянным. Дело в том, что рождение новой коры компенсируется ее поглощением в участках субдукции (поддвига) в глубоководных желобах.
Почему происходит движение литосферных плит?
Причина состоит в тепловой конвекции мантийного материала планеты. Литосфера подвергается растяжению и испытывает подъем, что происходит над восходящими ветвями от конвективных течений. Это провоцирует движение литосферных плит в стороны. По мере удаления от срединно-океанических рифтов происходит уплотнение платформы. Она тяжелеет, ее поверхность опускается вниз. Этим объясняется увеличение океанической глубины. В итоге платформа погружается в глубоководные желоба. При затухании восходящих потоков от разогретой мантии она охлаждается и опускается с формированием бассейнов, которые заполняются осадками.
Зоны столкновения литосферных плит – это области, где кора и платформа испытывают сжатие. В связи с этим мощность первой повышается. В результате начинается восходящее движение литосферных плит. Оно приводит к формированию гор.
Исследования
Изучение сегодня осуществляется с применением геодезических методов. Они позволяют сделать вывод о непрерывности и повсеместности процессов. Выявляются также зоны столкновения литосферных плит. Скорость подъема может составлять до десятка миллиметров.
Горизонтально крупные литосферные плиты плывут несколько быстрее. В этом случае скорость может составить до десятка сантиметров в течение года. Так, к примеру, Санкт-Петербург поднялся уже на метр за весь период своего существования. Скандинавский полуостров – на 250 м за 25 000 лет. Мантийный материал движется сравнительно медленно. Однако в результате происходят землетрясения, извержения вулканов и прочие явления. Это позволяет сделать вывод о большой мощности перемещения материала.
Используя тектоническую позицию плит, исследователи объясняют множество геологических явлений. Вместе с этим в ходе изучения выяснилась намного большая, нежели это представлялось в самом начале появления гипотезы, сложность процессов, происходящих с платформой.
Тектоника плит не смогла объяснить изменения интенсивности деформаций и движения, наличие глобальной устойчивой сети из глубоких разломов и некоторые другие явления. Остается также открытым вопрос об историческом начале действия. Прямые признаки, указывающие на плитно-тектонические процессы, известны с периода позднего протерозоя. Однако ряд исследователей признает их проявление с архея или раннего протерозоя.
Расширение возможностей для исследования
Появление сейсмотомографии обусловило переход этой науки на качественно новый уровень. В середине восьмидесятых годов прошлого века глубинная геодинамика стала самым перспективным и молодым направлением из всех существовавших наук о Земле. Однако решение новых задач осуществлялось с использованием не только сейсмотомографии. На помощь пришли и прочие науки. К ним, в частности, относят экспериментальную минералогию.
Благодаря наличию нового оборудования появилась возможность изучать поведение веществ при температурах и давлениях, соответствующих максимальным на глубинах мантии. Также в исследованиях использовались методы изотопной геохимии. Эта наука изучает, в частности, изотопный баланс редких элементов, а также благородных газов в различных земных оболочках. При этом показатели сравниваются с метеоритными данными. Применяются методы геомагнетизма, с помощью которых ученые пытаются раскрыть причины и механизм инверсий в магнитном поле.
Современная картина
Гипотеза тектоники платформы продолжает удовлетворительно объяснять процесс развития коры океанов и континентов в течение хотя бы последних трех миллиардов лет. При этом имеются спутниковые измерения, в соответствии с которыми подтвержден факт того, что основные литосферные плиты Земли не стоят на месте. В результате вырисовывается определенная картина.
В поперечном сечении планеты присутствует три самых активных слоя. Мощность каждого из них составляет несколько сотен километров. Предполагается, что исполнение главной роли в глобальной геодинамике возложено именно на них. В 1972 году Морган обосновал выдвинутую в 1963-м Вилсоном гипотезу о восходящих мантийных струях. Эта теория объяснила явление о внутриплитном магнетизме. Возникшая в результате плюм-тектоника становится с течением времени все более популярной.
Геодинамика
С ее помощью рассматривается взаимодействие достаточно сложных процессов, которые происходят в мантии и коре. В соответствии с концепцией, изложенной Артюшковым в его труде «Геодинамика», в качестве основного источника энергии выступает гравитационная дифференциация вещества. Этот процесс отмечается в нижней мантии.
После того как от породы отделяются тяжелые компоненты (железо и прочее), остается более легкая масса твердых веществ. Она опускается в ядро. Расположение более легкого слоя под тяжелым неустойчиво. В связи с этим накапливающийся материал собирается периодически в достаточно крупные блоки, которые всплывают в верхние слои. Размер подобных образований составляет около ста километров. Этот материал явился основой для формирования верхней мантии Земли.
Нижний слой, вероятно, представляет собой недифференцированное первичное вещество. В ходе эволюции планеты за счет нижней мантии происходит рост верхней и увеличение ядра. Более вероятно, что блоки легкого материала поднимаются в нижней мантии вдоль каналов. В них температура массы достаточно высока. Вязкость при этом существенно снижена. Повышению температуры способствует выделение большого объема потенциальной энергии в процессе подъема вещества в область силы тяжести примерно на расстояние в 2000 км. По ходу движения по такому каналу происходит сильный нагрев легких масс. В связи с этим в мантию вещество поступает, обладая достаточно высокой температурой и значительно меньшим весом в сравнении с окружающими элементами.
За счет пониженной плотности легкий материал всплывает в верхние слои до глубины в 100-200 и менее километров. С понижением давления падает температура плавления компонентов вещества. После первичной дифференциации на уровне «ядро-мантия» происходит вторичная. На небольших глубинах легкое вещество частично подвергается плавлению. При дифференциации выделяются более плотные вещества. Они погружаются в нижние слои верхней мантии. Выделяющиеся более легкие компоненты, соответственно, поднимаются вверх.
Комплекс движений веществ в мантии, связанных с перераспределением масс, обладающих разной плотностью в результате дифференциации, называют химической конвекцией. Подъем легких масс происходит с периодичностью примерно в 200 млн лет. При этом внедрение в верхнюю мантию отмечается не повсеместно. В нижнем слое каналы располагаются на достаточно большом расстоянии друг от друга (до нескольких тысяч километров).
Подъем глыб
Как было выше сказано, в тех зонах, где происходит внедрение крупных масс легкого нагретого материала в астеносферу, происходит частичное его плавление и дифференциация. В последнем случае отмечается выделение компонентов и последующее их всплытие. Они достаточно быстро проходят сквозь астеносферу. При достижении литосферы их скорость снижается. В некоторых областях вещество формирует скопления аномальной мантии. Они залегают, как правило, в верхних слоях планеты.
Аномальная мантия
Ее состав приблизительно соответствует нормальному мантийному веществу. Отличием аномального скопления является более высокая температура (до 1300-1500 градусов) и сниженная скорость упругих продольных волн.
Поступление вещества под литосферу провоцирует изостатическое поднятие. В связи с повышенной температурой аномальное скопление обладает более низкой плотностью, чем нормальная мантия. Кроме того, отмечается небольшая вязкость состава.
В процессе поступления к литосфере аномальная мантия довольно быстро распределяется вдоль подошвы. При этом она вытесняет более плотное и менее нагретое вещество астеносферы. По ходу движения аномальное скопление заполняет те участки, где подошва платформы находится в приподнятом состоянии (ловушки), а глубоко погруженные области она обтекает. В итоге в первом случае отмечается изостатическое поднятие. Над погруженными же областями кора остается стабильной.
Ловушки
Процесс охлаждения мантийного верхнего слоя и коры до глубины примерно ста километров происходит медленно. В целом он занимает несколько сотен миллионов лет. В связи с этим неоднородности в мощности литосферы, объясняемые горизонтальными температурными различиями, обладают достаточно большой инерционностью. В том случае, если ловушка располагается неподалеку от восходящего потока аномального скопления из глубины, большое количество вещества захватывается сильно нагретым. В итоге формируется достаточно крупный горный элемент. В соответствии с данной схемой происходят высокие поднятия на участке эпиплатформенного орогенеза в складчатых поясах.
Описание процессов
В ловушке аномальный слой в ходе охлаждения подвергается сжатию на 1-2 километра. Кора, расположенная сверху, погружается. В сформировавшемся прогибе начинают скапливаться осадки. Их тяжесть способствует еще большему погружению литосферы. В итоге глубина бассейна может составить от 5 до 8 км. Вместе с этим при уплотнении мантии в нижнем участке базальтового слоя в коре может отмечаться фазовое превращение породы в эклогит и гранатовый гранулит. За счет выходящего из аномального вещества теплового потока происходит прогревание вышележащей мантии и понижение ее вязкости. В связи с этим наблюдается постепенное вытеснение нормального скопления.
Горизонтальные смещения
При образовании поднятий в процессе поступления аномальной мантии к коре на континентах и океанах происходит увеличение потенциальной энергии, запасенной в верхних слоях планеты. Для сброса излишков вещества стремятся разойтись в стороны. В итоге формируются добавочные напряжения. С ними связаны разные типы движения плит и коры.
Разрастание океанического дна и плавание материков являются следствием одновременного расширения хребтов и погружения платформы в мантию. Под первыми располагаются крупные массы из сильно нагретого аномального вещества. В осевой части этих хребтов последнее находится непосредственно под корой. Литосфера здесь обладает значительно меньшей мощностью. Аномальная мантия при этом растекается в участке повышенного давления – в обе стороны из-под хребта. Вместе с этим она достаточно легко разрывает кору океана. Расщелина наполняется базальтовой магмой. Она, в свою очередь, выплавляется из аномальной мантии. В процессе застывания магмы формируется новая океаническая кора. Так происходит разрастание дна.
Особенности процесса
Под срединными хребтами аномальная мантия обладает сниженной вязкостью вследствие повышенной температуры. Вещество способно достаточно быстро растекаться. В связи с этим разрастание дна происходит с повышенной скоростью. Относительно низкой вязкостью также обладает океаническая астеносфера.
Основные литосферные плиты Земли плывут от хребтов к местам погружения. Если эти участки находятся в одном океане, то процесс происходит со сравнительно высокой скоростью. Такая ситуация характерна сегодня для Тихого океана. Если разрастание дна и погружение происходит в разных областях, то расположенный между ними континент дрейфует в ту сторону, где происходит углубление. Под материками вязкость астеносферы выше, чем под океанами. В связи с возникающим трением появляется значительное сопротивление движению. В результате снижается скорость, с которой происходит расширение дна, если отсутствует компенсация погружения мантии в той же области. Таким образом, разрастание в Тихом океане происходит быстрее, чем в Атлантическом.
Слои литосферы
Если рассматривать структуру литосферных плит более подробно, то их классифицируют на несколько прослоек, которые и формируют геологические особенности того или иного региона Земли. Они образуют основные свойства литосферы. Исходя из этого выделяют следующие слои твердой оболочки земного шара:
- Осадочный. Покрывает большую часть верхнего слоя всех земных блоков. В основном он состоит из вулканических горных пород, а также остатков органических веществ, которые за многие тысячелетия разложились на гумус. Плодородные почвы также входят в состав осадочного слоя.
- Гранитный. Это литосферные плиты, находящиеся в постоянном движении. Преимущественно состоят из сверхпрочного гранита и гнейса. Последний компонент представляет собой метаморфическую горную породу, подавляющая часть которой заполнена минералами из числа калиевого шпата, кварца и плагиоклаза. Сейсмическая активность данного слоя твердой оболочки находится на уровне 6,4 км/сек.
- Базальтовый. Преимущественно сложен из базальтовых отложений. Эта часть твердой оболочки Земли сформировалась под воздействием вулканической активности еще в древние времена, когда происходило формирование планеты и зарождались первые условия для развития жизни.
Что такое литосфера и ее многослойная структура? Исходя из вышеизложенного, можно сделать вывод, что это твердая часть земного шара, которая имеет неоднородный состав. Ее формирование происходило на протяжении нескольких тысячелетий, а качественный состав зависит от того, какие метафизические и геологические процессы протекали в конкретном регионе планеты. Влияние данных факторов отражается на мощности литосферных плит, их сейсмической активности по отношению к структуре Земли.
Конвергенция
Конвергенция – это схождение плит, которое выражается субдукцией и коллизией.
Существует несколько вариантов взаимодействия плит при их столкновении:
- Столкновение двух океанических плит;
- Столкновение океанической плиты с континентальной;
- Столкновение двух континентальных плит.
Характер столкновения плит может быть разный, в зависимости от этого возможны различные процессы. Процесс субдукции возникает тогда, когда более тяжелая океанская плита поддвигается под континентальную плиту или другую океаническую. Если сталкиваются две океанические плиты, то погружаться будет более древняя, потому что она уже остывшая и плотная. Субдукция связана с формированием новой континентальной коры.
Иногда при взаимодействии континентальной и океанской плит возникает процесс обдукции, но он бывает значительно реже и в наши дни нигде не установлен. Но, тем не менее, участки с эпизодами обдукции известны и произошли они в недавнее геологическое время. В процессе обдукции часть океанской литосферы надвигается на край континентальной плиты. Кора континентальных плит более легкая, чем вещество мантии, поэтому при их столкновении погрузиться в неё не может, что приводит к процессу коллизии. В ходе этого процесса края континентальных плит дробятся и сминаются. В результате происходит формирование крупных надвигов и рост горных сооружений. Например, при столкновении Индостанской и Евразийской плит, произошел рост горных систем Гималаев и Тибета, а океан Тетис в результате этого был закрыт – коллизия завершает закрытие океанического бассейна.
Современные конвергентные границы имеют общую протяженность около $57$ тыс. км. Их них $45$ тыс. км являются субдукционными, а остальные относятся к коллизионным границам.
Типы столкновений литосферных плитПравить
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры: столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Химический состав
По наполнению органическими и минеральными соединениями литосфера не отличается разнообразием и в основном представлена в виде 8 элементов.
В большинстве своем это горные породы, которые образовались в период активного извержения вулканической магмы и движения плит.
Химический состав литосферы выглядит следующим образом:
- Кислород. Занимает не менее 50 % всей структуры твердой оболочки, заполняя ее разломы, впадины и полости, формирующиеся во время передвижения плит. Играет ключевую роль в балансе компрессионного давления во время течения геологических процессов.
- Магний. Это 2,35 % процента твердой оболочки Земли. Его появление в составе литосферы связывают с магматической активностью в ранние периоды формирования планеты. Встречается на всей материковой, морской и океанической части планеты.
- Железо. Горная порода, являющаяся основным минералом литосферных плит (4,20 %). Ее основная концентрация это горные регионы земного шара. Именно в этой части планеты наибольшая плотность данного химического элемента. Не представлен в чистой форме, а находится в составе литосферных плит в перемешанном виде вместе с другими минеральными отложениями.
Теория литосферных плит на карте мира
Теория литосферных плит — самое интересное направление в географии. Как предполагают современные ученые, вся литосфера поделена на блоки, которые дрейфуют в верхнем слое. Их скорость составляет 2-3 см в год. Они именуются литосферными плитами.
Основатель теории литосферных плит
Кто же основал теорию литосферных плит? А. Вегенер одним из первых в 1920 г. сделал предположение о том, что плиты движутся горизонтально, но его не поддержали. И только в 60-х годах обследование океанического дна подтвердили его предположение.
Воскрешение этих идей привело к созданию современной теории тектоники. Её важнейшие положения были определены командой геофизиков из Америки Д. Морганом, Дж.Оливером, Л. Сайксом и др. в 1967-68 г.
Ученые не могут сказать утвердительно, что вызывает такие смещения и как формируются границы. Еще в 1910 г. Вегенер полагал, что в самом начале палеозойского периода Земля состояла из двух материков.
Лавразия охватывала область нынешней Европы, Азии(Индия не входила), Северной Америки. Она являлась северным материком. Гондвана включала Южную Америку, Африку, Австралию.
Где-то двести млн. лет назад эти два материка объединились в один — Пангею. А 180 млн. лет назад он вновь делится на два. Впоследствии Лавразия и Гондвана также были разделены. За счет этого раскола были образованы океаны. Причем Вегенер нашел свидетельство, которое подтверждало его гипотезу об едином материке.
Карта литосферных плит мира
За те миллиарды лет, в течение которых осуществлялось движение плит, неоднократно происходило их слияние и разделение. На силу и энергичность движения материков большое влияние оказывает внутренняя температура Земли. С её повышением увеличивается скорость движения плит.
Сколько плит и каким образом на сегодняшний день располагаются литосферные плиты на карте мира? Их границы очень условны. Сейчас насчитывается 8 важнейших плит. Они покрывают 90% всей территории планеты:
- Австралийская;
- Антарктическая;
- Африканская;
- Евразийская;
- Индостанская;
- Тихоокеанская;
- Северо-Американская;
- Южно-Американская.
Ученые постоянно проводят осмотр и анализ океанического дна, и исследуют разломы. Открывают новые плиты и корректируют линии старых.
Самая большая литосферная плита
Какая же литосферная плита крупнейшая? Самой внушительной является тихоокеанская плита, кора которой имеет океанический тип сложения. Её площадь 10300000 км ². Размер этой плиты, как и величина Тихого океана понемногу уменьшаются.
На юге она граничит с Антарктической плитой. С северной стороны создает Алеутский желоб, а с западной — Марианскую впадину.
Недалеко от Калифорнии, там где проходит восточная граница, движение плиты осуществляется по длине Северо-Американской. Здесь формируется разлом San Andreas.
Что происходит при движение плит
Литосферные плиты земли в своем движении могут расходиться, сливаться, скользить с соседними. При первом варианте между ними вдоль граничащих линий формируются участки растяжения с наличием трещин.
При втором варианте идет образование зон сжатия, которые сопровождаются надвиганием (обдукция) плит друг на друга. В третьем случае наблюдаются разломы, по длине которых осуществляется их скольжение. В тех местах, где плиты сходятся, возникает их столкновение. Это приводит к возникновению гор.
Литосферные плиты в результате столкновения формируют:
- Тектонические разломы, которые называются рифтовыми долинами. Они образуются в зонах растяжения;
- В том случае, когда возникает столкновение плит, имеющих материковый тип коры, тогда говорят о конвергентных границах. Это вызывает образование больших горных систем. Альпийско-Гималайская система явилась результатом столкновения трех плит: Евразийской, Индо-Австралийской, Африканской;
- Если сталкиваются плиты, имеющие разные типы коры(одна — материковый, другая — океанический), на побережье идет образование гор, а в океане — глубоких впадин(желобов). Пример такого образования — Анды и Перуанская впадина. Бывает что вместе с желобами формируются островные дуги(Японские острова). Так сформировались Марианские острова и желоб.
Литосферная плита Африки включает Африканский континент и имеет океанический тип. Именно там располагается самый большой разлом. Его протяженность 4000 км, а ширина — 80-120. Её оконечности покрыты многочисленными вулканами, действующими и потухшими.
Литосферные плиты мира, имеющие океанический тип строения коры, зачастую называют океаническими. К ним относятся: Тихоокеанская, Кокос, Наска. Они занимают больше половины пространства Мирового океана.
В Индийском океане их три (Индоавстралийская, Африканская, Антарктическая). Названия плит соответствуют названиям материков, которые он омывает. Литосферные плиты океана разделяются подводными хребтами.
Тектоника как наука
Тектоника литосферных плит изучает их движение, а также изменение в строении и составе Земли на заданной территории в определенный промежуток времени. Она предполагает, что дрейфуют не континенты, а литосферные плиты.
Именно это движение вызывает землетрясения и извержения вулканов. Оно подтверждено спутниками, но природа такого движения и его механизмы пока неизвестны.
ИзучениеПравить
Tectonics plates (preserved surfaces)
Características principales
Тектонические плиты — это разножесткие и однородные части, на которые можно разделить литосферу, самую внешнюю кору, которые подвешены в верхней земной мантии (или астеносфере), и полужидкости которых позволяют им двигаться или перемещаться.
Движение этих литосферных плит следует описанию тектоники плит, научной теории, возникшей в середине XNUMX-го века и он может объяснить различные земные и топографические явления, такие как образование гор, землетрясения и извержения вулканов.
Согласно этой теории, различные существующие тектонические плиты движутся, как плоты, сквозь мантию, трутся, сталкиваются и толкаются друг о друга в поле геологического напряжения.
Лучшим доказательством этого, по-видимому, является то, что нынешняя форма континентов позволяет нам предположить, что они были собраны вместе, как кусочки головоломки, миллионы лет назад, чтобы сформировать единый суперконтинент под названием Пангея. Продолжающееся тектоническое движение разделило континенты на их нынешнее расположение.
Скорость движения литосферных плитПравить
Литосферные плиты — крупнейшие блоки литосферы. Земная кора вместе с частью верхней мантии состоит из нескольких очень больших блоков, которые называются литосферными плитами. Их толщина различна — от 60 до 100 км. Большинство плит включают в себя как материковую, так и океаническую кору. Выделяют 13 основных плит, из них 7 наиболее крупных: Американская, Африканская, Антарктическая, Индо-Австралийская, Евразийская, Тихоокеанская, Амурская.
Плиты лежат на пластичном слое верхней мантии (астеносфере) и медленно движутся друг относительно друга со скоростью 1-6 см в год. Этот факт был установлен в результате сопоставления снимков, сделанных с искусственных спутников Земли. Они позволяют предположить, что конфигурация материков и океанов в будущем может быть совершенно отличной от современной, так как известно, что Американская литосферная плита движется навстречу Тихоокеанской, а Евразийская сближается с Африканской, Индо-Австралийской, а также с Тихоокеанской. Американская и Африканская литосферные плиты медленно расходятся.
Силы, которые вызывают расхождение литосферных плит, возникают при перемещении вещества мантии. Мощные восходящие потоки этого вещества расталкивают плиты, разрывают земную кору, образуя в ней глубинные разломы. За счет подводных излияний лав по разломам формируются толщи магматических горных пород. Застывая, они как бы залечивают раны — трещины. Однако растяжение вновь усиливается, и снова возникают разрывы. Так, постепенно наращиваясь, литосферные плиты расходятся в разные стороны.
Зоны разломов есть на суше, но больше всего их в океанических хребтах на дне океанов, где земная кора тоньше. Наиболее крупный разлом на суше располагается на востоке Африки. Он протянулся на 4000 км. Ширина этого разлома — 80-120 км. Его окраины усеяны потухшими и действующими вулканами.
Вдоль других границ плит наблюдается их столкновение. Оно происходит по-разному. Если плиты, одна из которых имеет океаническую кору, а другая материковую, сближаются, то литосферная плита, покрытая морем, погружается под материковую. При этом возникают глубоководные желоба, островные дуги (Японские острова) или горные хребты (Анды). Если сталкиваются две плиты, имеющие материковую кору, то происходит смятие в складки горных пород края этих плит, вулканизм и образование горных областей. Так возникли, например, на границе Евразийской и Индо-Австралийской плиты Гималаи. Наличие горных областей во внутренних частях литосферной плиты говорит о том, что когда-то здесь проходила граница двух плит, прочно спаявшихся друг с другом и превратившихся в единую, более крупную литосферную плиту.Таким образом, можно сделать общий вывод: границы литосферных плит — подвижные области, к которым приурочены вулканы, зоны землетрясений, горные области, срединно-океанические хребты, глубоководные впадины и желоба. Именно на границе литосферных плит образуются рудные полезные ископаемые, происхождение которых связано с магматизмом.
Развитие представлений о глобальной тектоникеПравить
См. также статью Гипотеза дрейфа материков А.Вегенера
Появлению концепции тектоники литосферных плит предшествовал ряд гипотез, стремившихся объяснить причины движения земной коры, её структурных изменений и явлений магматизма: гипотезы поднятия,контракции, пульсационная, ротационная, глубинной дифференциации, расширения Земли, дрейфа материков. Каждая из этих гипотез, давая удовлетворительное объяснение отдельным геологическим явлениям, не могла дать непротиворечивое объяснение всему многообразию процессов, происходящих в земной коре — складчатости, горообразования, магматизма. Контракционная гипотеза объсняла процесс складкообразования, но не раскрывала причины магматизма и поднятий, не связанных со складчатостью. Пульсационная гипотеза, заключавшаяся в предположении существования в геологической истории Земли эпох сжатия и расширения, объясняла механизм заложения геосинклиналей, образования грабенов и магматизма, но оставляла нераскрытой причину одновременного формирования структур растяжения и сжатия, а также причину пульсаций. «Мобилистская» гипотеза дрейфа материков А.Вегенера не давала объяснений механизма этого дрейфа. Между тем, в начале века такой механизм был предложен австрийским геологом О.Ампферером и немецким геофизиком Р Швиннером, которые назвали его «подкоровыми течениями». Голландский геофизик Ф.Вейнинг-Мейнес связал эти течения с конвекцией в мантии. Дальнейшее развитие эта гипотеза получила на рубеже 20-х — 30-х гг. в работах британского учёного А.Холмса и американского ученого Д.Григгса. Однако в те годы убедительных доказательств этих взглядов не существовало — единственным их подтверждением могла служить только схожесть береговой линии материков и сходные по составу комплексы пород, слагающих её по разные стороны океанов. Большинством геологов и геофизиков в 30-х −50-х гг. была принята гипотеза глубинной дифференциации, «фиксистская» по существу — то есть отрицавшая существенные горизонтальные перемещения земной коры. Согласно данной гипотезе подъёмы и соответствующие им опускания земной коры связаны с глубинной дифференциацией мантийного вещества и подъёму к поверхности лёгких продуктов дифференциации — астенолитов.
Начавшееся с конца 50-х гг. интенсивное геолого-геофизическое исследование океанов повлекло новые открытия, стоящие в противоречии с теорией глубинной дифференциации и объяснявшие положения мобилистской гипотезы Вегенера: было установлено существование относительно вязкой астеносферы, по поверхности которой было возможно гипотетическое перемещение литосферы; была открыта глобальная система срединно-океанических хребтов и рифтов; установлено различие мощности и состава континентальной и океанской коры; обнаружено существование магнитных аномалий, тянущихся параллельно срединно-океаническим хребтам и др.
Основой новой глобальной тектоники стала теория спрединга, выдвинутая в 1963 году английскими геофизиками Ф.Вайном и Д.Мэтьюзом и канадскими геологом Л.Морли. Теория спрединга предполагала немонолитную литосферу и, в сочетании с допущением гипотезы об периодической инверсии магнитного поля Земли, объясняла явление полосовых магнитных аномалий в океане. На основе теории спрединга была разработана первая возрастная шкала океанских магнитных аномалий, включавшая кайнозойскую эру и вторую половину верхнего мела. В Тихом океане были открыты разломы, пересекавшие срединно-океанический хребет, которые были выделены в класс трансфертных разломов, маркировавших трансформные границы литосферных плит. На основе изучения распределения трансфертных разломов и сейсмических очагов по Земному шару американский геофизик Дж. Морган, английские учёные Д.Маккензи и Ф.Паркером и французский учёный К.Ле Пишон определили литосферные плиты. Основные положения концепции тектоники литосферных плит были опубликованы в 1968 г.