В интервью Forbes Life доктор физико-математических наук, заведующий лабораторией сильных землетрясений и сейсмометрии Института физики земли РАН Рубен Татевосян рассказал о том, почему так сложно предугадать землетрясения и как правильная оценка сейсмической опасности может помочь предотвратить разрушения и человеческие жертвы в сейсмоактивных регионах. А также о том, что дают для науки такие масштабные катаклизмы, как землетрясения в Турции и Сирии, произошедшие 6 февраля
Рубен Татевосян — главный научный сотрудник и заместитель директора по вопросам инженерной сейсмологии и оценке сейсмической опасности в Институте физики земли РАН. Его лаборатория проводит работы по оценке сейсмической опасности, составляет каталоги землетрясений, определяет зоны очагов и оценивает параметры землетрясений, измеряет сейсмическое воздействие для проектирования строительства (в том числе АЭС) и обеспечивает прохождение экспертизы в МАГАТЭ и Ростехнадзоре.
Рубен Татевосян (Фото РНФ)
— Сейсмологи говорят о том, что землетрясение в Турции будет иметь последствия: произошло и происходит перераспределение напряжения, та сейсмическая активность, которой не было в течение десятилетий и даже столетий, сейчас может возрасти?
— Перераспределение напряжений наблюдается после любого землетрясения, тем более такого мощного, с магнитудой 7,8 и с последующей интенсивной афтершоковой серией, которая продолжается до сих пор. Но все-таки все изменения в первую очередь касаются непосредственного окружения очаговой области землетрясения и системы Восточно-Анатолийских разломов, в которой это землетрясение произошло. Эти разломы и сопряженные с ними области — первые кандидаты на повышение сейсмической активности. Но важно понимать, что есть и обратные процессы. После сильного землетрясения происходит релаксация напряжений. Так что из перераспределения напряжений автоматически не следует повышение вероятности возникновения другого сильного землетрясения — тем более в иной сейсмотектонической обстановке в другом геодинамическом регионе, на большом удалении от происшедшего катастрофического землетрясения.
— Если где-то и можно ожидать следующие землетрясения, то где? Российские регионы могут сейчас проявить сейсмическую активность?
— На юге России располагаются сейсмоактивные регионы: на черноморском побережье, Кавказе, Крыме. В основном там отмечаются землетрясения умеренных магнитуд, но были и сильные события. Хотя не было ни одного, достаточно надежно документированного землетрясения с такой большой магнитудой, как февральское в Турции. Высокая сейсмическая активность юга России отражена на картах общего сейсмического районирования (ОСР). На них показана ожидаемая интенсивность сейсмических воздействий, их частота. Карты ОСР построены для территории всей Российской Федерации. Они составляются большим коллективом специалистов разных организаций, лидирующая роль принадлежит Институту физики земли РАН. Комплект карт ОСР — нормативный документ, проектирование и строительство должно вестись с учетом его требований для любой территории. Они не нарисованы «методом прищуренного глаза», а представляют собой результат исследования геологии, сейсмичности, тектоники района. Фактически это синтез всего, что известно о данной местности. И возникновение землетрясений в каком-нибудь сейсмоактивном регионе на юге России ни в коей мере автоматически не означает, что они возникли вследствие турецкого землетрясения. Хотя южные регионы находятся относительно недалеко, это другие, в общем, отдельные сейсмоактивные регионы, поэтому там землетрясение может случиться и «по своему хотению».
— Складывается впечатление, что за последние годы землетрясений стало больше. Меняется ли сейсмическая активность земли или же диагностика становится более точной?
— В сейсмической активности наблюдаются всплески и спады, целенаправленного движения в сторону ее повышения нет. Отдельные тенденции все равно в итоге выходят на средние долговременные величины. Вот в 1960-е годы сейсмоактивность была гораздо выше, чем сейчас. Тогда произошли совершенно колоссальные события в Чили, на Аляске — моментная магнитуда этих землетрясений была свыше 9 (1960 год — Великое чилийское землетрясение, сильнейшее в истории наблюдений на планете, моментная магнитуда — по разным оценкам от 9,3 до 9,5. 1964 год — Великое Аляскинское землетрясение — сильнейшее землетрясение в истории США. — Forbes Life). С тех пор мало какие землетрясения их превзошли по магнитуде, разве что землетрясение в 2004 году у берегов острова Суматра на севере Индонезии. Поэтому говорить о том, что мы действительно наблюдаем большой рост сейсмической активности нельзя. Если же отвлечься от сильных землетрясений, то, действительно, небольшие землетрясения происходят тысячами в год, но их в состоянии записать только сейсмические приборы, а люди не ощущают. Изменение числа слабых сейсмических событий не показательно — это может быть просто связано с тем, что улучшаются сейсмические сети, повышается возможность обнаружения, определения координат, магнитуды микроземлетрясений.
Кроме того, представьте себе, что землетрясение магнитудой 7,8, как в Турции, случилось сейчас где-нибудь в пределах Тихоокеанского кольца на необитаемых просторах. Кого бы оно волновало, кроме сейсмологов? Так что фактически общество реагирует не на сильное землетрясение, как таковое, а на его катастрофические последствия.
— Что самое сложное в прогнозировании землетрясений? Что именно можно предвидеть и за какие сроки? Место, магнитуду, время?
— У ученых нет удовлетворительной физической модели процесса подготовки землетрясения. Поэтому все, что мы пытаемся делать, сродни некоему угадыванию. К сожалению, нет устойчивых связей между землетрясением и теми или иными явлениями, которые иногда могут наблюдаться перед землетрясением (так называемые предвестники). Так, иногда были сообщения об аномальных электромагнитных явлениях, об изменении химического состава и уровня грунтовых вод. Эти явления страдают неустойчивостью. Иногда сильное землетрясение возникает, хотя никаких известных предвестников не наблюдалось, а иногда, наоборот, — предвестники наблюдаются, но за ними не следует сильного землетрясения. Основывать прогноз на такой зыбкой почве очень сложно. И надеяться, что в итоге получится прогноз (надежный, эффективный, достоверный, хотя бы как прогноз погоды), нереально.
Почему-то никого не занимает другой вопрос: оценка сейсмической опасности. Она отличается от прогноза землетрясения тем, что вас не интересует точное место, магнитуда и конкретный день, когда возникнет землетрясение. Представьте, что у вас есть некоторое сооружение, и вы хотите узнать, какие сейсмические воздействия оно может испытать, скажем, за время своей жизни. Конкретный момент времени, когда возникнут эти воздействия, не важен. Для этого вы рассматриваете все известные сейсмические источники в регионе, оцениваете максимальную ожидаемую магнитуду, ее повторяемость, характер затухания сейсмических воздействий от источника до вашего объекта и на основании всей этой совокупности данных оцениваете ожидаемые воздействия на объект. Таким образом,вы не пытаетесь угадать место, время и силу готовящегося землетрясения, а оцениваете ожидаемые воздействия на конкретный объект в течение некоторого длительного интервала времени. На этом основании могут быть разработаны проектные решения, которые обеспечат безопасность объекта. Но это уже область сейсмостойкого строительства. Необходимо помнить, убивает не землетрясение — убивают здания, которые рушатся и погребают под собой людей.
— Что дают науке такие катаклизмы, как в Турции и Сирии? Ведь магнитуда 7,8 — это все-таки достаточно редкое явление. Это новый импульс для научных исследований?
— Во-первых, детальные исследования сильных землетрясений дают более полное понимание того, как устроена система разломов в регионе. Это важно для будущих расчетов сейсмической опасности. Во-вторых, можно будет провести расчеты, как меняется и перераспределяется напряжение, что позволит понять геодинамическую ситуацию и тенденции ее изменения не только в регионе, но в его окружении. И, в-третьих, такие сильные события дают материал для понимания физики очага, для разработки новых моделей. И это ценная информация для специалистов и проектировщиков, которые занимаются сейсмостойким строительством.
— На обывательском уровне существует некоторая путаница в классификация землетрясений по степени их силы и разрушительности.
— Для описания очага землетрясения существует магнитудная шкала. Она была предложена почти 100 лет назад Чарльзом Рихтером. В настоящее время применяются другие типы магнитуд, но суть в общем та же самая. Магнитуда (magnitude — в переводе с английского величина, размер) характеризует величину землетрясения, коррелирует с энергией. Каждое землетрясение характеризуется одним конкретным значением магнитуды. Например, магнитуда главного толчка землетрясения в Турции равна 7,8. Эту шкалу часто путают с макросейсмической шкалой интенсивности, которая оценивается в баллах, — она используется для определения интенсивности сотрясений в конкретном месте (населенном пункте). В 12-балльной шкале при 7 и более баллов уже начинаются разрушения. Чем дальше вы будете находиться от очага, тем больше затухают сотрясения, интенсивность их проявления на поверхности меньше. Поэтому баллы всегда приписывают конкретному населенному пункту, сколько населенных пунктов, столько оценок интенсивности может быть.
— Если мы говорим про минимизацию ущерба, какие существуют основные направления и превентивные меры в борьбе со стихией?
— Мое глубокое убеждение заключается в том, что основные усилия должны быть направлены на улучшение качества строительства. Я имею в виду и проектные решения, и их реализацию в ходе строительства. Сейсмологи предоставляют строителям исходные данные для проектирования в виде акселерограмм ожидаемого движения грунта. Проектные организации используют их для разработки антисейсмических мер, которые обеспечат безопасность зданий и сооружений. На мой взгляд, это наиболее перспективное направление для защиты населения, потому что плохо себе представляю ситуации, когда вся надежда на прогноз с эвакуацией. Например, если в проекте не учтены сейсмические воздействия на атомную станцию или химический завод, то все равно будет катастрофа. Эвакуация не решит проблему.
— Но что делать с застройкой, не рассчитанной на определенную сейсмичность, с историческими зданиями?
— Тут сложная ситуация. И вопрос о том, строить новое или укреплять и модернизировать старое, не такой однозначный. Конечно, вы не можете сказать: «Мы неправильно рассчитали все проекты, все дома, построенные не на ту сейсмичность, мы снесем и построим с нуля». Практически такое реализовать невозможно. Иногда предлагается пойти по пути антисейсмического усиления существующих зданий. Но меры по антисейсмическому усилению стоят очень недешево. Кроме того, сложно все рассчитать таким образом, чтобы укрепить слабые узлы, не навредив всему остальному. Непонятно, что делать с культурным наследием, уникальными историческими зданиями. Антисейсмические мероприятия могут погубить их. Так что боюсь, и тут простых решений нет.
— Что можно предпринять для защиты регионов, где землетрясения будут снова и снова происходить?
— Правильно оценивать ожидаемые воздействия, потому что фраза «будут происходить землетрясения» мало информативна, пока нет сведений, какой силы воздействия ждать и с какой повторяемостью. А дальше, имея адекватную оценку воздействий, правильно проектировать и качественно строить. Еще нужен контролирующий орган, который отслеживал, чтобы в этой цепочке не было бы сбоев. Мы не можем заменить нашу планету на другую, без землетрясений. Поэтому надо сосредоточить усилия на том, чтобы обеспечить безопасную жизнь через строительство, правильный учет возможных воздействий.
— Ужасают кадры из Турции, когда дома складываются внутрь буквально за считаные секунды. Почему все знают, что это опасный регион (граница трех тектонических плит), но всем все равно, надзорные органы закрывают глаза и поэтому так строят?
— Как правило, в полицию приходят ставить охранную сигнализацию после ограбления, хотя было бы разумнее делать заранее. С землетрясениями работает такой же человеческий фактор. Пока ничего не случилось, вроде бы и беспокоиться не о чем. И, конечно, нельзя не учитывать экономическую сторону проблемы — антисейсмическое строительство стоит дорого. Выбирая между потенциальной угрозой землетрясения (когда-то в абстрактном будущем, возможно, не при вашей жизни, может даже не при жизни ваших детей) и увеличением стоимости строительства дома или покупки квартиры минимум в два раза — что вы выберете?
— Но тем не менее есть страны более прогрессивные с точки зрения контроля и научных изысканий на своих территориях, все-таки они достигают таких видимых результатов при наступлении катаклизмов. Например, Япония?
— Это отчасти справедливо только для последних десятилетий. Токийское землетрясения 1923 года — одна из самых крупных катастроф в истории сейсмологии (Официальное число погибших — 174 000, еще 542 000 числятся пропавшими без вести, свыше миллиона человек остались без крова. Ущерб от землетрясения Канто оценивается в $4,5 млрд, что составляло на тот момент два годовых бюджета страны. — Forbes Life). Технологическое преимущество не сильно помогло японцам при аварии на АЭС в Фукусиме в 2011 году. Даже если оставить эту аварию как особый случай техногенной катастрофы, можно вспомнить землетрясение в 1995 году в Кобе магнитудой 7,3. По некоторым данным, было разрушено около 200 000 зданий. Но, безусловно, есть определенная тенденция. Чем богаче и технологически более развита страна, тем выше материальные потери, тем меньше человеческих жертв, дорогостоящее качественное жилье не складывается как карточные домики старой застройки — разумеется, если говорить об одинаковой силе воздействия.
— Если мы говорим о России и о постсоветском пространстве, застройка, которая была еще во времена СССР, отвечала достаточно жестким критериям. Что-то изменилось?
— Дело в том, что современные нормативы не менее жесткие и даже наоборот. Как говорил мой научный руководитель, профессор Николай Виссарионович Шебалин, который участвовал в построении карт сейсмического районирования, «со временем все карты краснеют» — красным закрашиваются более опасные территории. Другое дело, что в СССР строительство контролировалось государством, застройка шла централизованно. Проще было контролировать качество, и было проще вести весь процесс от начала до конца.
— Опасности, которые стоят особняком, — это потенциальные повреждения АЭС при сейсмической активности, утечки радиации. Как изменилась безопасность после аварии на Фукусиме?
— В самой методике исследования сейсмической опасности мало что изменилось. И до Фукусимы рекомендовалось придерживаться консервативного подхода, т. е. сомнения трактовать в пользу большей опасности. Но теперь предлагается добавлять больший запас прочности, 40% к тому, что получается в расчетах.
— В турецкой провинции Мерсин на финальном этапе строительства находится АЭС «Аккую», которую строит Росатом. Оправдано строительство атомных станций в сейсмоопасном регионе?
— В свое время наш институт привлекали к оценке сейсмической опасности «Аккую». Ожидаемые сейсмические воздействия, заложенные в проект, почти на два порядка превышают те воздействия, которые зарегистрированы на площадке от землетрясения 6 февраля. Так что происшедшее землетрясение вовсе не требует пересмотра оценок сейсмической опасности площадки АЭС. Есть страны, где невозможно выбрать место, которое вообще никогда не будет подвержено землетрясениям. Конечно, речь не идет о таких катастрофических землетрясениях, как недавнее сейсмическое событие в Турции. Нельзя перестать жить где-то, потому что там происходят землетрясения. Вопрос в том, как обеспечить безопасность, а не прятать голову в песок.
Эпицентры землетрясений (1963—1998)
Колебания от землетрясений передаются в виде сейсмических волн. Землетрясения и связанные с ними явления изучает сейсмология, которая ведёт исследования по следующим основным направлениям:
- Изучение природы землетрясений: почему, как и где они происходят.
- Применение знаний о землетрясениях для защиты от них путём прогноза возможных в том или ином месте сейсмических ударов в целях строительства стойких к их воздействию конструкций и сооружений.
- ОписаниеПравить
- Сейсмические волны и их измерение
- Процессы, происходящие при сильных землетрясениях
- Измерение силы и воздействий землетрясенийПравить
- Шкала магнитуд. Шкала Рихтера
- Шкала Медведева-Шпонхойера-Карника (MSK-64)
- Другие виды землетрясенийПравить
- Тектонические и техногенные
- ПрогнозированиеПравить
- Распространение и историяПравить
ОписаниеПравить
Землетрясения на Урале
«Ступеньки речных террас – особенно наглядный индикатор тектонических движений Урала – позволяют с большими подробностями проследить как давнюю, так и близкую историю подъёма гор. Общепризнанная средняя скорость роста Урала – примерно два миллиметра в столетие. Однако в некоторых местах Уральские горы растут на пять и больше миллиметров в год. Конечно, по сравнению с активно развивающимися высокосейсмичными горными системами – Тянь-Шанем, Памиром, Кавказом и другими – древний Урал не спешит. Зарегистрированных здесь землетрясений сравнительно немного. Но и этого вполне достаточно для неотложного, всестороннего изучения современных геологических процессов развития Урала и их влияния на деятельность человека.»
Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.
Вулканические землетрясения — разновидность землетрясений, при которых толчки возникают в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканические газы. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей землетрясение этого вида не представляет. Кстати, землетрясение иногда является самым опасным стихийным бедствием наряду с извержением вулкана.
Причиной землетрясения является быстрое смещение участка литосферы (литосферных плит) как целого в момент релаксации (разрядки) упругой деформации напряжённых пород в очаге землетрясения.
Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы:
- «нормальные» — 34—70 км,
- «промежуточные» — до 300 км,
- «глубокофокусные» — свыше 300 км.
К последней группе относится землетрясение, которое произошло 24 мая 2013 года в Охотском море, тогда сейсмические волны достигли многих уголков России, в том числе и Москвы. Глубина этого землетрясения достигала 600 км.
Сейсмические волны и их измерение
Скольжению пород вдоль разлома в начале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли — землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.
Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом — эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.
Скорости сейсмических волн могут достигать 10 км/с.
Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы — сейсмографы. В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смещается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие — к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).
Типы сейсмических волн
Сейсмические волны делятся на 3 типа:
- Волны сжатия, или продольные сейсмические волны (первичные; P-волны). Вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Скорость P-волны равна скорости звука в соответствующей горной породе. При частотах P-волн, больших 15 Гц, эти волны могут быть восприняты на слух как подземный гул и грохот.
- Волны сдвига, или поперечные сейсмические волны (вторичные; S-волны). Заставляют частицы пород колебаться перпендикулярно направлению распространения волны.
Процессы, происходящие при сильных землетрясениях
Подводные землетрясения (моретрясения) являются причиной цунами — длинных волн, порождаемых мощным воздействием на всю толщу воды в океане, во время которых происходит резкое смещение (поднятие или опускание) участка морского дна. Цунами образуются при землетрясении любой силы, но большой силы достигают те, которые возникают из-за сильных землетрясений (с магнитудой более 7).
Резкое перемещение больших масс земли в очаге должно сопровождаться ударом колоссальной силы.
Измерение силы и воздействий землетрясенийПравить
Для оценки и сравнения землетрясений используются шкала магнитуд (например, шкала Рихтера) и различные шкалы интенсивности.
Шкала магнитуд. Шкала Рихтера
Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал:
- локальная магнитуда (Ml);
- магнитуда, определяемая по поверхностным волнам (Ms);
- магнитуда, определяемая по объемным волнам (Mb);
- моментная магнитуда (Mw)
Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.
Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясения на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности:
- в Европейском союзе — европейская макросейсмическая шкала (EMS),
- в России — шкала Медведева — Шпонхойера — Карника (см. ниже),
- в Японии — шкала Японского метеорологического агентства (Shindo),
- в США — модифицированная шкала Меркалли (MM):
- 1 балл (незаметное) — отмечается только специальными приборами;
- 2 балла (очень слабое) — ощущается только очень чуткими домашними животными и некоторыми людьми в верхних этажах зданий;
- 3 балла (слабое) — ощущается только внутри некоторых зданий, как сотрясение от грузовика;
- 4 балла (умеренное) — землетрясение отмечается многими людьми; возможно колебание окон и дверей;
- 5 баллов (довольно сильное) — качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;
- 6 баллов (сильное) — лёгкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;
- 7 баллов (очень сильное) — значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;
- 8 баллов (разрушительное) — разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;
- 9 баллов (опустошительное) — обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 см/с;
- 10 баллов (уничтожающее) — обвалы во многих зданиях; в остальных — серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;
- 11 баллов (катастрофа) — многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;
- 12 баллов (сильная катастрофа) — изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.
Шкала Медведева-Шпонхойера-Карника (MSK-64)
12-балльная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского союза применяется более современная Европейская макросейсмическая шкала (EMS). MSK-64 лежит в основе СНиП II-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и некоторых странах. В Казахстане в настоящее время используется СНиП РК 2.03-30-2006 «Строительство в сейсмических районах».
Другие виды землетрясенийПравить
Вулканические землетрясения — разновидность землетрясений, при которых толчки возникают в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканический газ которые давят снизу на поверхность Земли. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей землетрясение этого вида не представляет. Кроме того, вулканические землетрясения обычно являются предвестниками извержения вулкана, которое грозит более серьёзными последствиями.
Тектонические и техногенные
Тектонические землетрясения возникают при смещении горных плит или в результате столкновений океанической и материковой платформ. При таких столкновениях образуются горы или впадины и происходят колебания поверхности.
ПрогнозированиеПравить
Краткая инструкция для наблюдения и собирания фактов о колебаниях земной коры
- детерминистические предсказания отдельных землетрясений с точностью, достаточной для того, чтобы можно было планировать программы эвакуации, нереальны;
- по крайней мере некоторые формы вероятностного прогноза текущей сейсмической опасности, основанные на физике процесса и материалах наблюдений, могут быть оправданы.
Даже если бы точность измерений и несуществующая пока физико-математическая модель сейсмического процесса дали возможность с достаточной точностью определить место и время начала разрушения участка земной коры, магнитуда будущего землетрясения остаётся неизвестной. Дело в том, что все модели сейсмичности, воспроизводящие график повторяемости землетрясений, содержат тот или иной стохастический генератор, создающий в этих моделях динамический хаос, описываемый лишь в вероятностных терминах. Более явно источник стохастичности качественно можно описать следующим образом. Пусть распространяющийся во время землетрясения фронт разрушения подходит к участку повышенной прочности. От того, будет разрушен этот участок или нет, зависит магнитуда землетрясения. Например, если фронт разрушения пройдёт дальше, землетрясение станет катастрофическим, а если нет, останется небольшим. Исход зависит от прочности участка: если она ниже некоторого порога, разрушение пойдет по первому сценарию, а если выше, по второму. Возникает «эффект бабочки»: ничтожно малое различие в прочности или напряжениях приводит к макроскопическим последствиям, которые нельзя предсказать детерминистически, поскольку это различие меньше любой точности измерений. А предсказание места и времени землетрясения с неизвестной и, возможно, вполне безопасной магнитудой не имеет практического смысла, в отличие от расчёта вероятности того, что сильное землетрясение произойдёт.
Распространение и историяПравить
Землетрясения захватывают большие территории и характеризуются: разрушением зданий и сооружений, под обломки которых попадают люди; возникновением массовых пожаров и производственных аварий; затоплением населенных пунктов и целых районов; отравлением газами при вулканических извержениях; поражением людей и разрушением зданий обломками вулканических горных пород; поражением людей и возникновением ячеек пожаров в населенных пунктах от вулканической лавы; провалом населенных пунктов при обвальных землетрясениях; разрушением и смывом населенных пунктов волнами цунами; отрицательным психологическим воздействием.
- 1290 г. в районе залива Бохайвань (Китай) погибло около 100 тыс. чел.,
- 1556 г. в провинции Шэньси — 830 тыс. чел.,
- 1737 г. в Калькутте (Индия) — 300 тыс. чел.,
- 1908 г. в Мессине (Италия) — 120 тыс. чел.,
- 1923 г. в Токио — 143 тыс. чел.,
- 1976 г. в Таншане (Китай) — около 240 тыс. чел.,
- 1999 г. в Турции — около 40 тыс. чел.,
- 2001 г. в Индии — около 30 тыс. чел.
- 1988 г. в Армении — около 25 тыс. чел.