Сейсмический радар

Сейсмический радар Землетрясения

На данной странице вы можете посмотреть онлайн-карту землетрясений в мире, график и подробную статистику толчков (сегодня ). Сила землетрясения зависит от глубины толчка, расстояния до эпицентра, и измеряется в баллах по шкале Рихтера, характирезующих магнитуду (энергию, выделившуюся в виде сейсмических волн).

В данном блоке отмечены землетрясения () или ближайшие к , если регион не сейсмически активный; Сколько всего было землетрясений сегодня, за год, или за выбранный период; так же, количество толчков с магнитудой выше 5 и самое сильное землетрясение в году.

Мы собираем информацию из всех доступных источников, среди которых: BGS (Британская геологическая служба), EMSC (Европейско-средиземноморский сейсмологический центр), GA (Австралийский центр исследования Земли), GDACS (Глобальная система координации и оповещения о стихийных бедствиях), GFZ (Немецкий исследовательский центр наук о Земле), GHNZ (Информационный центр геологической опасности Новой Зеландии), NRCAN (Исследовательский центр природных ресурсов Канады), TMD (Тайский метеорологический департамент), USGS (Геологическая служба США), UOA (Афинская сейсмологическая лаборатория). В настройках вы можете выбрать любой набор служб сейсмомониторинга для отображения землетрясений на карте. Данные обновляются в реальном времени, через небольшой интервал.

Почему происходят землетрясения?

В центре Земли находится ядро, окруженное жидкой раскаленной мантией. Самый верхний слой -кора, состоит из литосферных плит. На данный момент ученым известно о крупных, десятках средних и огромном количестве маленьких плит. Они не стоят на месте, а постоянно двигаются, врезаясь друг в друга.

Землетрясения:  Водное цунами и Как распознать надвигающуюся катастрофу и что делать?

Когда одна плита напирает и давит на другую, между ними скапливается колоссальное напряжение. Но вечно оно копиться не может: происходит сдвиг и «разрядка» напряжения — землетрясение.

Большинство очагов землетрясений возникает на глубине 30-40 км под поверхностью Земли.

Наиболее активные зоны — Тихоокеанский пояс, проходящий вдоль почти всего побережья Тихого океана (примерно 90 % всех землетрясений), и Альпийский пояс — от Индонезии до Средиземного моря (5-6 % всех землетрясений).

Сейсмически активной считается 20% территории России: Камчатка, Сахалин, Курильские острова, Прибайкалье, Иркутская область, Бурятская Республика, Якутия, Кавказ, побережья Черного и Каспийского морей.

Около 5 процентов этих районов являются крайне опасными — там часто происходят толчки, приводящие к 8-10-балльным землетрясениям. В опасных зонах проживает около 20 миллионов человек.

Самое разрушительное землетрясение в России за последние 100 лет произошло на острове Сахалин в 1995 году. В одном из поселков с населением 3197 человек, подземный толчок магнитудой 7,6 унес 2040 жизни.

  • 1 земл. магнитудой 6 и выше
  • 5 земл. силой от 5 до 6 баллов
  • 26 земл. силой от 4 до 5 баллов
  • 157 земл. силой от 3 до 4 баллов
  • 430 земл. силой от 2 до 3 баллов
  • 578 земл. магнитудой менее 2

За последние 24 часа было 1 землетрясение магнитудой 6.3, 5 землетрясений магнитудой 5+, 26 землетрясений магнитудой 4+, 157 землетрясений магнитудой 3+ и 430 землетрясений магнитудой 2+. Также произошло 578 небольших землетрясений магнитудой менее 2,0, которые люди обычно не ощущают.

Сильное землетрясение магнитудой 6.3 произошло в Тасманово море, Новая Зеландия, 11 часов назад.

Маг. 0 | 28 km NE от Shizunai-furukawachō, Hidaka-gun, Хоккайдо, Япония —

  • Прошлые 7 дней: Маг. 6.3 Среда, 15 фев 2023 19:38 (GMT +13) – Тасманово море, 81 km N от Веллингтон, Новая Зеландия
  • Последние 30 дней: Маг. 7.8 Понедельник, 6 фев 2023 03:17 (GMT +2) – 32 km W от Газиантеп, Турция
  • Прошедшие 365 дней: Маг. 7.9 Вторник, 10 янв 2023 03:17 (GMT +9:30) – Банда (море), Индонезия

Недавние землетрясения выше магнитуды 3. 0 в мире (обновлен )

Отображение самых последних землетрясений и землетрясений от землетрясения магнитудой и выше ( из 1197 Землетрясения, показать больше):

Рассказываем, в каких регионах России могут произойти землетрясения

Так, землетрясение магнитудой 5,3 произошло у берегов Камчатского края. Об этом сообщили в региональном управлении МЧС. Подземные толчки ощущались в отдельных районах Усть-Камчатска силой до 3 баллов. Кроме этого, 13 февраля землетрясение произошло в акватории Тихого океана недалеко от Курильских островов.

MSK1.RU узнал у директора Института теории прогноза землетрясений и математической геофизики РАН Петра Шебалина о самых сейсмически опасных и безопасных районах России. Показываем на карте.

По словам эксперта, в наибольшей опасности находится восточная часть России. Именно там в последнее время зафиксированы сейсмические толчки.

— Прежде всего, сейсмически опасные районы в России — это Курильские острова и Камчатка. Кроме этого, Байкал и Забайкалье, Южный Сахалин, а также Якутия. В густонаселенных городах, которые находятся возле Байкала, могут быть подобные ситуации. Катаклизмы могут случиться и на Северном Кавказе или Крыму.

А вот жителям центральной части России повезло больше. По словам сейсмолога, регионы, которые находятся рядом с Москвой и Санкт-Петербургом, вряд ли коснутся землетрясения.

— Землетрясение вряд ли коснется Москву и Московскую область. Даже отголоски дальних и сильных землетрясений. Например, Охотоморское землетрясение на Камчатке в столице ощущалось, но разрушений не было. Центральная Россия, где проходит Европейская платформа, более-менее устойчивая, — рассказал директор Института теории прогноза землетрясений и математической геофизики РАН Петр Шебалин.

  • корреспондент MSK1.RU отправилась в один из самых разрушенных после землетрясений городов Турции и своими глазами увидела масштабы катастрофы;
  • под завалами в Турции нашли семью россиян. Ирина вместе с мужем Аталаем и двумя сыновьями погибли из-за землетрясений. Они должны были уехать пораньше в Россию, но не успели из-за болезни ребенка;
  • о том, что сейчас происходит в Турции, мы рассказываем в нашей онлайн-трансляции.

Землетрясение, произошедшее 6 февраля в Турции и Сирии, унесло жизни 36 тысячи человек. «Афиша Daily» решила разобраться, есть ли способы не допустить такого количества жертв в случае катаклизма и как города восстанавливаются и меняются после подобных трагедий.

Что произошло

Рано утром 6 февраля в провинции Кахраманмараш на юго-востоке Турции случилось землетрясение магнитудой 7,7. Затем последовали три десятка афтершоковПовторные толчки с меньшей магнитудой., а в середине дня — еще одно землетрясение в соседнем Газиантепе. На данный момент известно о 36 тысячах погибших, из них около 4500 на территории Сирии.

Пока продолжается разбор завалов и поиск пострадавших, в СМИ обсуждают проблемы с мерами безопасности. Некоторые из разрушенных домов были совсем новыми и якобы защищенными от землетрясений даже такой силы. После разрушительного подземного толчка в 1999 году в Измите (тогда погибли 17 тысяч человек) в Турции ужесточили стандарты безопасности. Строители должны использовать высококачественный бетон, армированный стальными стержнями. Колонны и балки должны быть распределены так, чтобы эффективно поглощать сотрясения от подземных толчков. Однако эти правила не соблюдаются: по данным турецкого Министерства окружающей среды и урбанизации, половина зданий в стране (около 13 млн) построены с нарушением мер безопасности. Вероятно, это связано с распространенной практикой строительных амнистий: правительство раз в несколько лет освобождает застройщиков от уплаты штрафов.

Проблема заключается еще и в том, что на данный момент все еще не существует способа гарантированно предсказать землетрясение. Во второй половине XX века риск возможных толчков оценивался по уровню грунтовых вод и содержанию радона в горных породах: исследователи считали, что эти параметры должны резко меняться за несколько недель до сдвига плит. Этот подход работает далеко не всегда. Благодаря нему в середине 1970-х успешно предсказали землетрясение в китайской провинции Ляонин — жителей эвакуировали за день до толчка и большого количества жертв удалось избежать. Однако это чуть ли не единственный подобный пример. Позже появилась система регистрации форшоков — первых слабых толчков, за которыми обычно следуют более серьезные колебания. Современные сейсмографы позволяют регистрировать данные на обширной площади, но этот способ все еще не является достаточно точным.

Эксперт рассказал, где в России может произойти землетрясение

Позднее подземные толчки магнитудой 4,4 и 3,3 были зафиксированы в Грузии. А утром 13 февраля в акватории Тихого океана у Курильских островов произошло новое землетрясение магнитудой 5,5.

По словам эксперта, для того чтобы понять, где именно может произойти следующее землетрясение — необходимо посмотреть на историю, в каком районе оно происходило ранее. Так можно выявить закономерность и разлом тектонических плит.

— Надо смотреть историю землетрясений. Не так давно это происходило на Сахалине. Могут быть именно разрушительные землетрясения на Байкале. На Кавказе можно вспомнить трагедию 1988 года в Армении, которая случилась недалеко от наших границ в Гюмри. В соседней стране Грузии были подобные случаи, а также в Азербайджане. Ялтинское землетрясение тоже было, если вспоминать историю (Крымские землетрясения 1927 года — серия из двух землетрясений на Крымском полуострове, которые произошли 26 июня и в ночь с 11 на 12 сентября 1927 года. — Прим. ред.).

Еще чуть-чуть и видео загрузится

Вот так выглядят города Турции, которые пострадали от землетрясений

Основной причиной возникновения землетрясений являются сдвиги, смещения горных пород. Они происходят на большой глубине. Очаг землетрясения — место, где происходит смещение горных пород.

— Климатические изменения не играют большой роли. Они могут повлиять на ситуацию в Арктике, когда из-за потепления фундамент тает, мерзлота, фундамент ослабляется, разжижается фундамент. То есть если там и происходят землетрясения, то они будут намного сильнее, чем где-либо еще. В зонах вечной мерзлоты только. Мы как люди тоже можем повлиять на землетрясения, — считает сейсмолог.

История помнит немало землетрясений, причиной которой стал именно человеческий фактор.

Главный научный сотрудник Института геологии Дагестанского федерального исследовательского центра РАН Василий Черкашин рассказал корреспонденту «РГ», что сейсмическая активность Кавказских гор достаточно высока.

— Высокая сейсмичность Кавказа обусловлена в основном взаимодействием Аравийской и Скифской тектонических плит и Анатолийской платформы. В последнее время землетрясений с большой магнитудой у нас не наблюдается, а мелкие происходят. Это неплохо, поскольку не накапливается большой потенциал, мелкие землетрясения сбрасывают напряженность. В Турции землетрясение произошло на стыке Анатолийской платформы и Аравийской плиты. Заметили, сколько было афтершоков? Это какое напряжение копилось!

Анализ наблюдения ученых Института физики Земли РАН и наши исследования показывают, что миграция сейсмичности со стороны Анатолийской платформы идет в направлении Кавказа. Мы подсчитали скорость события, данные показывают, что к 2030-м годам в Дагестане возможно землетрясение. Надо учитывать это, в первую очередь, при строительстве, — говорит Василий Черкашин.

Опасение вызывают, в первую очередь, незаконно построенные многоэтажные дома, которые не имеют сейсмопоясов и не соответствуют техническим параметрам. Специальная комиссия выявила в столице Дагестана около 500 многоквартирных домов, возведенных с нарушением норм градостроительства. На самом деле таких больше.

Как пояснил ученый, сейсмическое микрорайонирование необходимо для уточнения сейсмичности, особенно там, где предполагается строительство высотных зданий или опасных предприятий. В него входит множество исследований, позволяющих определить характеристики грунта.

— Грунт в Махачкале разный, к застройке необходимо подходить с особой ответственностью. При землетрясении на скальном грунте балльность уменьшается на один-два пункта, на рыхлом — на столько же повышается. Наши предки всегда с осторожностью относились к застройке, поэтому собор Александра Невского в Махачкале в 1871 году заложили именно на скальном грунте, ведь храмы всегда строили в самом безопасном месте, — рассказывает ученый.

Проанализировав видеокадры разрушительного землетрясения в Турции, он пришел к следующему выводу.

— Видно, что с 20-этажным домом ничего не стало, а девятиэтажный рассыпался в пыль. Скорее всего, у него отсутствовал сейсмопояс. Как мне рассказали, турки пошли на смягчение требований по сейсмике, так как с 1939 года в стране не было крупных землетрясений, — считает Черкашин.

Наиболее сильное за всю историю Дагестана землетрясение было зафиксировано 14 мая 1970 года. Эпицентр находился в Буйнакском районе.

В результате мощных толчков силой до девяти баллов было полностью разрушено более 20 населенных пунктов. Частично пострадали города Махачкала, Буйнакск, Каспийск, Хасавюрт и Кизилюрт. Погиб 31 человек, 45 тысяч остались без крова.

Могло ли вызвать землетрясение в Турции какое-то сейсмическое оружие? Как Луна способна спровоцировать подземный удар? Почему ученые не верят 600 предвестникам землетрясений? Об этом корреспондент «РГ» беседует с заведующим лаборатории сейсмической опасности Института физики Земли РАН, доктором физико-математических наук Алексеем Завьяловым.

Алексей Дмитриевич, землетрясение в Турции породило шквал самой разной информации, в том числе гипотез и версий о причине катастрофы. Давайте оценим несколько самых «громких». Естественно, не обошлось без конспирологии. Например, что американцы заранее вывели из Турции консульства, а затем применили сейсмическое оружие. Речь идет о знаменитом проекте НАARP, который вспоминают, как только на планете происходит что-то экстремальное с климатом, с озоновым слоем, с сейсмикой.

Алексей Завьялов: Энергию главного толчка турецкого землетрясения можно оценить как 10 в 16-17 степени Дж. Энергия огромная! При взрыве атомной бомбы мощностью 20 Кт выделяется энергия порядка 10 в 14 степени Дж, а при взрыве водородной бомбы 20 Мт — 10 в 17 степени Дж. Но сегодня взрывы такой мощности обязательно зафиксируют все мировые системы мониторинга. Других источников, чтобы сгенерировать такую энергию, нет.

Кстати, всего 5-10 процентов энергии подземного удара превращается в сейсмические волны, остальное уходит в тепло.

И тем менее в СМИ среди причин называют, к примеру, гравитационные силы Луны, а китайские ученые считают, что виновато замедление вращения ядра Земли, а возможно, даже изменение его направления.

Алексей Завьялов: Гравитация Луны может сработать, но только при определенных условиях. Здесь надо напомнить, как происходят землетрясения. Плавающие в жидкой мантии тектонические плиты могут наползать, перемещаться друг относительно друга и зацепляться. В этом случае их движение останавливается, и в этих зонах сцепления накапливаются огромные напряжения. Но вовсе не обязательно, что оно обязательно превратится в землетрясение. Для толчка, возможно, не хватает последней капли. Такая ситуация может длиться сколько угодно. И при определенных условиях гравитация Луны может оказаться той самой последней каплей, спусковым крючком, который спровоцирует мощный подземный толчок. Подчеркну, что в этом нет ничего нового.

Что касается влияния изменений скорости вращения ядра Земли, то это явление давно известно. Никакой связи между ним и землетрясениями пока не установлено.

После каждого катастрофического землетрясения многие недоумевают. Вот, казалось бы, произошли форшоки — умеренные по силе толчки. Разве это не повод давать SOS? Есть еще множество предвестников. Неужели ученые не могут их классифицировать, составить своеобразную «таблицу Менделеева» предвестников и на этой основе предсказывать сильные подземные удары?

Алексей Завьялов: Да, база предвестников огромна, их более 600. Но беда в том, все они ненадежны. Ни один не гарантирует однозначного результата. Скажем, вы видите рост концентрации радона в колодцах, вроде, надо бить тревогу, переселять людей, но ничего не происходит. А через какое-то время опять наблюдается рост радона, но на этот раз — сильнейший толчок. Кто на такой зыбкой основе решится выселять сотни тысяч людей? Аналогичная картина и с форшоками, которые составляют всего несколько процентов из общего числа землетрясений. Статистика показывает, что они часто порождают ложные предупреждения.

Однако китайцы в 1975 году сумели заранее предсказать сильное землетрясение..

Алексей Завьялов: Сумели, но это один из немногих успешных, хорошо описанных прогнозов на основе предвестников. Тогда в одном из районов страны ученые заметили, что сильно изменился уровень грунтовых вод, а в феврале, когда было холодно, вдруг в больших количествах появились змеи, которые выползли из своих нор. На основании этих признаков было предсказано землетрясение. Люди несколько недель по ночам уходили из домов. И действительно, толчок произошел, причем практически без жертв. На этот раз повезло, ведь предвестник мог и не сработать, как бывало в подавляющем большинстве случаев. Как говорится, стечение обстоятельств. Увы, пока наука может предсказать вероятность землетрясения на 5-7 лет, но бессильна дать кратковременный прогноз на месяц, а тем более день.

Сейсмический радар

Вот упомянули змей, которые участвовали в прогнозе. А ведь еще была знаменитая история с собакой. Она буквально вытащила хозяина из дома и спасла во время сильнейшего ашхабадского землетрясения. Так, может, сделать ставку на различных живых предвестников? Ведь шахтеры брали с собой канареек, которые оповещали о появлении опасного метана.

Алексей Завьялов: Если бы было все так очевидно, то давно в домах опасных по сейсмике районах жили «сейсмические канарейки». Здесь такая ситуация. С одной стороны, известны примеры аномального поведения животных перед Крымскими землетрясениями 1927 года и Ашхабадским землетрясением, но перед землетрясениями в Спитаке и в Нефтегорске ничего подобного замечено не было. Вообще историй про необычное поведение животных множество, но все на уровне слухов.

Знаю, что в 70-е годы работала специальная экспедиция в Таджикистане, где изучали разные предвестники, в том числе и биологические — необычное поведение живых организмов. Но аргументированных доказательств, какой-то закономерности, на основании которой можно с высокой вероятностью делать прогнозы, получить не удалось.

Читал, что еще в 60-70-х годах прошлого века ученые были уверены, что смогут понять логику сейсмики. В мире начался бум исследований, вкладывались большие деньги, создавались специальные полигоны. Однако задача оказалось сложнее, чем предполагали. С тех пор прошло более 50 лет, наука совершила множество прорывов в самых разных направлениях, например, искусственный интеллект уже ставит самые сложные диагнозы, предсказывает банкротства, прогнозирует климат, а землетрясения так и остаются загадкой. Точный прогноз для науки недоступен. В чем дело? Ведь за эти годы накоплен огромный материал? Или его недостаточно? Чего-то не хватает?

Алексей Завьялов: Хороший вопрос. Я бы разделил его на две части. Действительно, объем самых разных данных о землетрясениях и их предвестниках огромен. На их основе мы строим сейсмические карты, где указано, что в таких-то районах в течение ближайших десятилетий могут с такой-то вероятностью произойти землетрясения, сотрясения от которых достигнут определенного уровня. Эти прогнозы строители обязаны учитывать в своих проектах и возводить здания с повышенной устойчивостью.

Теперь о том, почему, имея такую большую базу данных, не удается прогнозировать сильные толчки с точностью до месяца, а тем более дня? Увы, даже имея огромный материал, наука пока не разобралась с физическими процессами, которые порождают землетрясения. Видимо, нужен человек, который посмотрел бы на всю эту картину под неожиданным углом зрения и нашел решение этой очень старой задачи.

Как когда-то Эйнштейн в огромном количестве физических теорий и экспериментов увидел теорию относительности?

Алексей Завьялов: Согласен, очевидно, требуется «сейсмический» Эйнштейн.

Кстати, почти после каждого сильного землетрясения появляется сообщение, что такой-то ученый его предсказал. Вот и на этот раз СМИ написали, что голландcкий сейсмолог Франк Хубербитс еще 3 февраля предупреждал, что в этом районе Турции будет удар магнитудой 7,5. Может, сейсмический Эйнштейн уже появился?

Анатомия земли

Через Турцию проходит система Анатолийских разломов, или разрывов земной коры, вдоль которых в свое время Африка и Аравия присоединились к Евразии. Сейчас активизировался Анатолийский разлом, который отделяет Аравию от Евразии. В свое время между Аравией, Африкой и Евразией находился океан Тетис, потом континенты начали перемещаться, и океан перестал существовать. Случившееся — катастрофа, но то, что она рано или поздно произойдет, можно было предположить, ведь через Турцию проходит центральная часть планетарного сейсмически активного Средиземноморско-Гималайского пояса.

Столь страшные последствия землетрясения были обусловлены силой магнитуды около восьми баллов и близким от поверхности земли расположением очага, его глубина — около десяти километров. Усугубило ситуацию то, что трагедия произошла в густонаселенных районах.

Пять самых мощных землетрясений за историю наблюдений

В течение года на планете фиксируют:

1 катастрофическое землетрясение — магнитуда выше 8; 10-20 очень сильных — от 7 до 8; 100-120 сильных — от 6 до 7; 800-1000 умеренных — от 5 до 6; 6000-6200 легких — от 4 до 5; 40-50 тысяч слабых — от 3 до 4. Каждый день 1000-8000 очень слабых — магнитуда меньше 3.

Самые мощные землетрясения зафиксированы в Чили (1960 год, магнитуда 9,5), Индонезии (2004 год, 9,3), США (1964 год, 9,2), Япония (2011 год , 9,1), Курилы (1952 год, 9,0).

Самые страшными за всю историю считаются землетрясения: в 1556 году в Китае погибло 830 тысяч человек, 1976 год, Китай — 242 тысячи, 525 год, Византия — 250 тысяч, 1920 год, Китай — 240 тысяч, 2004 год, Индонезия — 230 тысяч.

Опыт других стран

Землетрясение магнитудой в 9 баллов произошло в ночь с 5 на 6 октября 1948 года. Очаг был расположен прямо под городом, поэтому последствия оказались разрушительными: не устояло около 80% домов, под обломками погиб каждый третий житель Ашхабада. Положение усугубило то, что толчки начались глубокой ночью, и люди не смогли вовремя эвакуироваться.

И все же среди причин глобальных потерь и разрушений оказались не только природные факторы. Во-первых, город застраивался в конце XIX века, когда вероятность землетрясений не принималась во внимание. Ближе к 1940-м годам там уже начали возводить сейсмоустойчивые здания, но и эти постройки были рассчитаны на магнитуду на два-три балла ниже, чем та, которая ударила по Ашхабаду. Во-вторых, после Второй мировой войны в городе оставалось много аварийных зданий, бюджета на ремонт которых не было.

Новые дома строились из дешевых материалов: большую часть жилого фонда составляли одноэтажные саманныеИз сырой глины, соломы и растительных волокон. кирпичные дома с глиняной крышей. Кровли в то время в Ашхабаде не было, поэтому жители периодически чинили крышу, смазывая ее новыми слоями глины. В момент землетрясения этот толстый глиняный массив обрушился на спящих людей и не оставил шансов на выживание: даже те, кто уцелел во время обвала, задохнулись от пыли и нехватки воздуха.

Правительство довольно быстро отреагировало на катастрофу. Несмотря на полное разрушение аэропорта и выход из строя всех средств связи, уже через четыре часа после землетрясения самолеты с пострадавшими отправили в близлежащие города — Ташкент и Баку. На второй день восстановили железнодорожное сообщение, в город привезли больше тысячи медиков и спасателей. Предусмотрели возможную эпидемию: из‑за жары тела погибших быстро разлагались, поэтому военные регулярно обеззараживали местность и технику. В течение шести дней в город доставили стандартные готовые дома из фанеры и материалы для строительства прочных зданий. Такая оперативность объясняется тем, что в 1948 году многие отрасли в СССР продолжали работать в режиме военного времени. Специалисты называли спасение Ашхабада уникальным примером крупномасштабных спасательных работ, которые по своей эффективности и организованности практически не имели аналогов в мировой практике.

Опыт ашхабадской катастрофы стал стимулом к началу глобальных исследований сейсмической обстановки в разных регионах СССР. Именно после этого случая в стране всерьез задумались о безопасности городов и начали разработку новых стандартов сейсмоустойчивости. Через год после землетрясения в районе Ашхабада были установлены первые сейсмические станции, к 1970-м годам в Туркменистане их насчитывалось уже более двадцати. В 1960-х здесь также появился полигон для изучения движений земной коры.

Здания в отстроенном заново Ашхабаде в основном были цилиндрической формы и не выше четырех этажей — такие лучше выдерживают колебания земли. Более сложные и протяженные постройки разделяли на простые секции антисейсмическими швами, чтобы стены не разошлись от встряски. При этом комнаты внутри могли быть совсем небольшими, ведь многочисленные перегородки помогают погасить энергию колебаний.

Реже в строительстве использовали каркасные здания. Массивные несущие элементы из армированного бетона можно было изготовить на заводе, привезти на место возведения и уже там собрать из них монолитный скелет будущего дома, который бы стоял на внушительных колоннах. Похожие колонны даже сейчас заметны в мраморных зданиях нового Ашхабада, построенных после развала Советского Союза.

Канто, Япония

В Японии происходило много крупных катаклизмов, но один из самых разрушительных случился в регионе Канто, в который входит в том числе столица. В 1923 году произошло сильнейшее землетрясение, прибрежные поселения уничтожило цунами, а в крупных городах начался пожар, подпитываемый порывистым ветром. Токио лишился всех каменных зданий и половины мостов, устоял лишь отель «Империал», который был первым сейсмоустойчивым зданием в Японии.

От обрушения отель спасли сейсмические разделительные швы: это особый вид напольных перекрытий, который не дает образовываться щелям в полу, когда постройка начинает колебаться из‑за толчков. По сути, эти швы делят здание на множество отсеков, устойчивых по отдельности, а по линиям перекрытий располагают двойные несущие стены, которые удерживают всю конструкцию. Еще одной особенностью «Империала» были стены конической формы — более толстые на нижних этажах и тонкие на верхних. В сочетании с медной крышей (которая, в отличие от традиционных для Японии черепичных, исключает вероятность падения обломков) получилась устойчивая конструкция, способная выдержать землетрясение. Опыт «Империала» стал отправной точкой для переосмысления безопасности построек: оттолкнувшись от этого примера, японцы начали совершенствовать инфраструктуру с учетом возможных катаклизмов.

Все, что сложно восстановить, здесь стараются держать на виду: например, в отличие от большинства европейских стран, здесь провода инфраструктуры располагают над землей, чтобы не перекапывать город после каждого землетрясения.

С точки зрения технологичности интересны современные сейсмоустойчивые дома: между фундаментом здания и грунтом размещают дополнительную прослойку, которая гасит колебания почвы. Этот эффект достигается благодаря свинцово-резиновым, пружинным или скользящим опорам (то есть всему, что может двигаться). Нижняя часть опоры во время землетрясения перемещается вместе с почвой, верхняя же остается на месте — здание в этот момент покачивается, но не падает. Благодаря такой конструкции выдерживать землетрясения могут даже небоскребы — например, знаменитая телебашня Tokyo Skytree высотой 634 метра. Похожие технологии строительства используют и в Калифорнии.

Сам «Империал» тоже со временем усовершенствовали: во время перестройки отеля под зданием создали специальную рельсовую платформу, по которой оно движется во время землетрясения. Энергия от толчков теперь не уходит в само здание (когда стены движутся относительно друг друга), а остается в месте соприкосновения рельсов и платформы. Это контринтуитивное решение: вместо того чтобы делать здания более крепкими, японцы построили мобильные дома, которые качаются в такт земле и благодаря этому не разрушаются.

Еще одна важная японская разработка — сейсмогасители, работающие по принципу маятника. Так, на верхних этажах башни «Тайбэй 101» прямо внутри здания подвесили шар весом 660 тонн и закрепили его стальными канатами и гидравлическими амортизаторами. При сильных толчках шар перемещается в противоположном направлении и компенсирует сейсмические нагрузки. А в 2020 году здесь запустили первый в мире сейсмоустойчивый поезд, который в случае отключения электричества продолжает движение и обеспечивает эвакуацию жителей.

Спитак, Армения

В 1988 году произошло землетрясение, которое охватило 40% территории Армении. За полминуты оно разрушило город Спитак до основания. Эпицентр находился на глубине всего 10 км, поэтому толчки магнитудой в 6,9 оказались летальными для 25 тысяч человек, а около полумиллиона оказались без крова.

Из‑за гористой местности и тяжелых погодных условий эвакуация осложнилась: пострадавших свозили в палатки с подогревом, а раненых людей доставляли на городской стадион, потому что все больницы в округе были разрушены. Масштабы разрушения и сильные морозы оставили очень мало шансов на выживание тем, кто оставался под завалами. На помощь пострадавшим отправили врачей из Москвы и военных, но они не знали, как работать в подобных условиях. Очевидцы вспоминают: «Мы героически рванули туда, чтобы помочь, но мы же мешали остальным! Мы устраивали пробки на дорогах и раненые умирали в машинах! Мы даже не знали, что такое синдром сдавливания: не знали, что нельзя сразу доставать человека из завалов, если у него раздавлена конечность, надо наложить жгут, иначе он погибнет. Мы не знали таких простых вещей!»

События не только показали уязвимость системы сейсмической безопасности, на которой явно экономили, но и неготовность спасательных служб к последствиям катастрофы. Ведущий ученый-сейсмолог Н.Шебалин признавался: «Рухнуло все, что прогнило: неоправданно оптимистическая схема сейсмического районирования Армении и намеренно удешевленные конструкции многоэтажных зданий, зарегулированная система гражданской обороны и беспомощная система местной администрации». После спитакского землетрясения власти задумались о создании специального ведомства по ликвидации катастроф: стране нужны были обученные спасатели и отработанная схема действий на случай подобных ситуаций. Так в 1989 году появилась Государственная комиссия по чрезвычайным ситуациям, из которой позже образовалось МЧС Армении.

В восстановлении Армении большую роль сыграла поддержка других государств: на момент землетрясения ​​Михаил Горбачев находился с визитом в США и призвал мировое сообщество помочь Армянской ССР. Гуманитарную помощь республике оказали 111 стран: они отправили врачей и спасателей с медикаментами, донорской кровью и продовольствием. А внутри СССР развернули масштабную программу восстановительных работ (которая, правда, остановилась сразу после распада Советского Союза). На время реконструкции Спитака людей перевозили в Москву, их размещали в пустующих квартирах, общежитиях, а некоторые москвичи даже подселяли пострадавших к себе.

И все же жизнь в Спитаке затихла: здесь восстановили жилой фонд, но не успели отстроить заводы, которые обеспечивали рабочие места. Многие жители, уехавшие в другие города сразу после катастрофы, так и не вернулась. Если до землетрясения здесь жили 20 тысяч человек, то сейчас — 12 тысяч, большинство из которых пенсионеры.

Суматра, Индонезия

Утром 26 декабря 2004 года на северо-западе от острова Суматра в Индийском океане произошло подводное землетрясение магнитудой 9,3 балла по шкале Рихтера. Ученые подсчитали, что высвободившаяся энергия по своей силе была сопоставима с энергией всего мирового запаса ядерного оружия.

Землетрясение спровоцировало мощнейшее цунами — волны достигали 15 метров и дошли даже до ЮАР, находящейся в 6900 км от эпицентра. Погибло по разным оценкам от 225 до 300 тысяч человек, точное число погибших так и не удалось установить: многих просто унесло в океан. Масштабы катастрофы усугубились тем, что на рождественские каникулы в Суматру приехало много иностранцев, отели были переполнены.

На тот момент в Индонезии не было ни системы оповещения в прибрежных районах, ни шанса предугадать случившееся. Природная катастрофа в Индийском океане стала стимулом к развитию системы предупреждения о цунами. В 2013 году Межправительственная океанографическая группа запустила сеть буев, которые фиксируют скорость волны и колебания уровня воды и передают предупреждающий сигнал на сушу.

После событий 2004 года в Индонезии появилась программа доступного жилья «Миллион домов», которая позволила заново отстроить часть пострадавших городов. Сейчас при поддержке Японии и Всемирного банка ее планируют дополнить и построить устойчивые к цунами дома на прибрежных территориях. Технические характеристики продумали с учетом небольшого бюджета (хотя программу финансируют извне, у Индонезии все равно недостаточно средств, чтобы возвести высокотехнологичные здания, как в Японии): несущие колонны стен укрепят арматурными стержнями, которые предотвратят разлом и обрушение, а кольцевые балки сверху и снизу домов будут удерживать общий баланс каркаса. В другой вариации устойчивых домов планируют сделать высокую конструкцию с минимальным весом и опорой на колонны, чтобы поток воды мог выбить стену первого этажа, не обвалив дом.

Но для небольших деревень — а их в Индонезии около 43% от всех поселений — проблема жилья по-прежнему остается острой. После цунами жители разрушенных прибрежных поселков остались в красной зоне во временных укрытиях, которые предоставило государство. Уехать от моря они не могут, поскольку для них важно продолжать рыболовный промысел. В качестве альтернативного варианта было решено перенести домохозяйства за пределы красной зоны, но остаться в доступности к воде. А чтобы снизить силу удара волны по строениям, вдоль берега высадили природный волнорез из мангровых зарослей.

Главные новости к этой минуте, хроники стрит-арта и плейлисты для настроения — в нашем паблике в

Зона разлома

Юрий Вольфман, директор Института сейсмологии и геодинамики Крымского федерального университета имени В. И. Вернадского:

— Непосредственного влияния «турецкого разлома» на Крым не происходит. Данные о сейсмических сотрясениях на полуострове не поступают, по расчетам сейсмологов их и не должно быть. Опасная зона Анатолийского разлома тянется от Кипра до Грузии, в районе озера Ван, и до Махачкалы в Дагестане. На северо-восточном фланге зоны толчки ощущались также в Сочи.

Непрерывный мониторинг Крымско-Черноморского региона проводится центрами сейсмических наблюдений Крымского федерального университета, включающими семь станций вдоль побережья от Севастополя до Керчи. Даже мелких событий пока не отмечено.

Но надо иметь в виду, что Крым является сейсмоопасным регионом, хотя и находится на периферии сейсмоопасного пояса. Землетрясения здесь возможны. Но все равно они будут слабее, чем нынешнее в Турции.

Предотвратить подобную трагедию кардинально невозможно. В мире нет методики, позволяющей сделать краткосрочный точный прогноз относительно времени, места и силы будущего землетрясения. Динамика сейсмического процесса и критерии его проявления в разных регионах земного шара различны.

В качестве превентивной меры для защиты населения применяется система долгосрочного прогноза. Это изучение сейсмических участков в течение многих лет. На основании полученных данных выводятся закономерности, позволяющие оценить максимальную амплитуду возможного землетрясения в изучаемом районе и его воздействие на соседние участки. Составляются карты сейсмического районирования, которые входят в число нормативных государственных документов — строительных норм и правил, регламентирующих антисейсмические мероприятия при проектировании и строительстве объектов. Если на карте в этой точке указана планка девять баллов, то нельзя возводить здания с сейсмической устойчивостью ниже нее. Это нарушение.

В СССР такие работы проводились. Делали ли это в Турции, не знаю.

В Крыму и в целом в России данные карты регулярно обновляются с периодичностью 20 — 30 лет, с учетом новых происходящих землетрясений и совершенствования методов оценки сейсмической опасности.

Оцените статью
Землетрясения