Точно прогнозировать землетрясения люди пока не научились, хотя работы в этом направлении ведутся постоянно. Предсказать время землетрясения в Турции и Сирии 6 февраля было практически невозможно, поскольку оно началось сразу с крупных сейсмических толчков. Об этом в интервью RT рассказал профессор, доктор географических наук, заведующий кафедрой геоморфологии и палеогеографии МГУ Андрей Бредихин. Землетрясение не стало неожиданностью для специалистов, поскольку Турция находится в зоне высокой сейсмической активности. На территории России тоже есть ряд таких зон, напомнил учёный. Все опасные районы нанесены на специальные карты сейсмической активности, которыми необходимо руководствоваться при строительстве зданий.
— Андрей Владимирович, учёные установили, что недавнее землетрясение в Турции привело к сдвигу литосферных плит на 3 м. По данным специалистов, Аравийская плита сдвинулась примерно на 3 м по отношению к Анатолийской плите. Бывали ли прежде настолько заметные подвижки плит?
— Горизонтальное перемещение литосферных плит, уходящих основаниями в верхнюю мантию, — доказанное явление. Однако это всегда не разовый, единовременный сдвиг, а плавный процесс, во время которого разные участки плит перемещаются с разной скоростью. Во время землетрясения и следующих за ним афтершоков (повторных толчков. — RT) происходит серия локальных горизонтальных и вертикальных деформаций, в результате происходят сдвиги литосферных плит в региональном масштабе. Можно сказать, что Аравийская плита сдвинулась относительно Анатолийского блока, но оценивать реальные перемещения пока преждевременно.
— Насколько типичны для этого региона землетрясения такой силы?
— На территории Турции есть две зоны активных разломов. Первый, Северо-Анатолийский разлом, проходит по южному макросклону Понтийского хребта на севере, он тянется с запада на восток страны. Второй — на востоке, протягивается от Средиземного моря через районы городов Искендерун, Газиантеп и далее на северо-восток. Движение Аравийской плиты с юга на север приводит к постоянным подвижкам. В зоне этих разломов постоянно фиксируются однотипные сдвиговые деформации и часто происходят мощные землетрясения.
Так, в 1999 году в западной части Турции произошло очень сильное землетрясение магнитудой 7,7. В 1939, 1944 годах в этом же районе были землетрясения магнитудой 7,5 и т. д. Есть исторические свидетельства о разрушительных землетрясениях на территории современной Турции начиная с 900-х годов нашей эры, много таких событий отмечалось, например, в XVII веке. В последние годы в научных исследованиях часто встречались прогнозы, согласно которым мощное землетрясение ожидалось на западе страны, в районе Стамбула. Однако оно произошло на востоке страны. Кстати сказать, где оно и должно было произойти.
В целом всем специалистам было ясно, что в Турции должно произойти землетрясение магнитудой выше 7, вопрос был только в том, когда именно оно произойдёт.
— А известна хотя бы примерная периодичность, с которой это происходит?
— Рост напряжения в земной коре происходит постоянно, в какие-то моменты оно находит выход в виде сильных сейсмических толчков. Традиционно считается, что одно крупное землетрясение в сейсмически опасном районе происходит примерно раз в 200—250 лет. На практике это может происходить намного чаще — мы видим это на примере Турции. Если бы мы могли точно прогнозировать время землетрясений, не было бы таких трагедий, как та, что произошла в Турции.
Также по теме
Как вулкан землетрясение остановил: учёные о взаимодействии двух стихийных бедствий
— Сейчас разрабатываются приложения для смартфонов для оповещения о землетрясениях — они фиксируют самые первые толчки с помощью встроенных в телефон акселерометров и сообщают об опасности. Как вы думаете, могут ли такие мобильные технологии помочь уменьшить число жертв в случае землетрясения?
— Да, в смартфоны могут быть установлены такие датчики, которые могут отследить микроколебания земли. Но проблема в том, что в техногенной городской среде такие микроколебания происходят постоянно из-за метро, движения грузового транспорта и т. д. И в таких условиях подобные датчики будут постоянно срабатывать даже без угрозы землетрясения. Отделить же антропогенный сейсмический шум от истинных глубинных толчков личными гаджетами пока нет возможности.
— Были ли какие-то особенности у землетрясений в Турции и Сирии?
— Научных данных пока мало, но если судить по циркулирующей в СМИ информации, то одно из самых необычных явлений наблюдается в районе турецкого города Искендерун, который начал затапливаться после землетрясения. То есть произошло опускание участков суши, что и привело к подтоплению прибрежной полосы.
— 6 февраля сейсмические толчки отмечались по всей планете: их фиксировали в районе Курильских островов, в Нью-Йорке, на Байкале — всего было зафиксировано более 200 землетрясений. Насколько типична такая ситуация, когда сейсмическая волна прокатывается по всей планете?
— Да, это типичная ситуация. Например, когда в 1977 году в Румынии, в горах Вранча (Южные Карпаты) произошло крупное землетрясение, толчки докатились до Москвы — в квартирах раскачивались люстры и гремела посуда. Так что да, когда происходят крупные землетрясения, толчки могут распространяться на очень большие расстояния.
Кроме того, надо учитывать, что смещается фокус внимания СМИ и общества, все начинают пристально следить за новостями о подземных толчках. Например, в районе Байкала сейсмические толчки отмечаются постоянно, они фиксировались этим летом, например, а также осенью. Это обычное явление для этой суперсейсмической зоны, тянущейся в сторону Монголии. Но тогда об этом никто не писал, сейчас же люди обратили внимание на все события такого рода, происходящие на планете.
При этом далеко не всегда землетрясения сопровождаются такими разрушениями и жертвами, как сейчас в Турции.
Например, буквально недавно, 9 января, землетрясение магнитудой 7,6 произошло у берегов Индонезии, в результате погибли люди, но жертвы исчислялись не тысячами, а десятками.
- Затопление улиц в турецком городе Искендерун после землетрясения
- globallookpress.com
В Турции наложилось сразу несколько факторов — высокая плотность населения и очень низкое качество строительства, «на честном слове», как говорят. Кроме того, землетрясение произошло рано утром, когда люди спали в своих домах.
— Насколько на сегодняшний день науке понятна природа землетрясений?
— Принципиально она понятна — есть физические, расчётные модели. Литосферные плиты движутся постоянно, на их стыках копится напряжение, которое периодически находит разрядку в виде землетрясений — когда превышается предел упругости горных пород в земной коре.
Нелинейные процессы: российский геолог — о прогнозировании землетрясений и глубинной структуре Земли
Кстати, эпицентр землетрясения 6 февраля в Турции и Сирии находился близко к поверхности, в земной коре. Такие землетрясения обычно сильно влияют на рельеф местности — рисунок гидросети, речных русел, крупные разрывы на поверхности. Так что у этого события вполне могут быть и другие географические последствия, которые пока просто не успели зафиксировать — сейчас не до этого.
— Сейчас в турецких СМИ и соцсетях распространяются слухи об искусственном характере землетрясения. Как можно прокомментировать такие гипотезы с научной точки зрения?
— Спровоцировать землетрясение технически возможно — если произвести подземные ядерные взрывы большой мощности. Такие взрывы могут вызвать дополнительное напряжение в земной коре, что может стать спусковым крючком — триггером для землетрясения, если оно уже назревало.
Однако почвы под такими разговорами применительно к землетрясению 6 февраля нет, поскольку искусственные взрывы всегда фиксируются приборами в различных сейсмических центрах. Это невозможно не заметить.
— Могут ли зоны сейсмической активности смещаться в глобальном масштабе — какие-то районы «успокаиваться», а какие-то, наоборот, «пробуждаться»?
— Да, периодичность в активности тех или иных тектонических участков действительно отмечается. В отдельные периоды активизируется то Байкальский рифт (крупный тектонический разлом в земной коре. — RT), то, к примеру, Рейнский грабен. Кстати, он расположен в центре Европы — это тоже довольно сейсмически активная зона. Или, например, в США ожидают страшный взрыв Йеллоустонского макровулкана, этим постоянно пугают общественность. Он расположен тоже в сейсмически активной зоне, просто сейчас там не очень интенсивны тектонические процессы.
Более 31 тыс. погибших: в Турции продолжается ликвидация последствий землетрясения
— Помимо Байкала, какие ещё есть сейсмически активные зоны в России? Например, звучал прогноз, что аналогичное турецко-сирийскому землетрясение может произойти в будущем в Крыму.
— Тут не надо даже гадать, поскольку есть сейсмическое районирование России. Не только Крым, но и все горные сооружения России, включая старый и тихий Урал, относятся к зонам тектонической и в том числе сейсмической активности. Кстати, старые в геологическом смысле горы обычно находятся в зоне семибалльной сейсмичности. Про Дальний Восток можно и не упоминать, о сейсмической активности Камчатки наслышаны все. При этом Кавказ входит вообще в зону девяти- или десятибалльной активности. Все эти данные должны служить руководством для строителей, здания должны возводиться в соответствии с ними. По крайней мере, строители точно знают об этих предписаниях, исполняют или нет — это другой вопрос.
Возвращаясь к Крыму, отмечу, что, согласно последней редакции карты Общего сейсмического районирования России, его южное побережье входит, как и Кавказ, в 9—10-балльную зону сейсмической активности, центральные районы — в 8—9-балльную, а северный — в 7-балльную.
— Вопрос, который мучает всех: можно ли прогнозировать крупные землетрясения, чтобы они не уносили столько человеческих жизней?
— К сожалению, пока это невозможно. Хотя такие разработки ведутся. Например, учёные пытаются научиться узнавать о скором землетрясении благодаря системам GPS-отслеживания высотного положения земной поверхности. Дело в том, что Земля «дышит», её поверхность постоянно колеблется с разной скоростью из-за протекающих в недрах процессов. Амплитуда колебаний измеряется миллиметрами, поэтому мы этого не замечаем. Можно попробовать фиксировать участки, где планета начинает вдруг «дышать» более часто и «глубоко» из-за начинающихся глубинных возмущений.
Сейсмолог Татевосян назвал маловероятным рост числа мощных землетрясений в ближайшие годы
Плюс никто не отменяет и традиционные геофизические методы, позволяющие отследить первые микротолчки, которые предшествуют сильным колебаниям. Правда, так бывает не всегда — например, 6 февраля в Турции и Сирии землетрясение началось резко, без предупреждающих толчков.
Есть и разные косвенные методы — например, можно отслеживать уровень грунтовых вод, поскольку внутренние колебания в земной коре отражаются на водных горизонтах.
И последнее — животные часто заранее реагируют на приближающееся землетрясение и покидают дом. Они чувствуют микроколебания на определённой частоте, это известный факт. Так что если вы живёте в сейсмически опасной зоне, то завести домашних питомцев — хорошая идея.
Внешняя часть земной тверди слагается из двух компонентов: земной оболочки или литосферы и застывающего верхнего слоя мантии под ней или астеносферы. Пласт астеносферы представляет собой аморфное пластичное вещество переходной фазы между жидким и твёрдым состоянием. Находится в размягчённом виде и на резко приложенное усилие вроде давления реагирует, подобно твердому телу, а на медленное и беспрерывное как жидкость, но перегретая и чрезвычайно вязкая. Когда-нибудь учёные более детально изучат физику процессов недр планеты и добавят новых терминов вроде жидкокристаллической термосплавины среди твёрдоплазменного центроземельного океана. В рамках существующей научной парадигмы литосфера почти неподвижна, а подвижными считаются её фрагменты или плиты. А движутся плиты практически непрерывно по отношению друг к другу, словно плавая по поверхности мантии. Побудительным фактором передвижения плит становится конвекция в самой мантии, обуславливаемая теплогравитационными течениями её слоёв. Источником энергии таких течений является разность температур у центра Земли и температур околоповерхностных фрагментов её оболочки. Раскалённые среди центральных частей планеты породы расширяются, од-новременно плотность этих пород уменьшается, затем они поднимаются, на их место опускаются более прохладные, следовательно, более тяжёлые массивы пород, отдавшие часть тепла в верхних частях мантии. Подобный процесс теплового переноса протекает постоянно, в итоге появляются структурированные обособленные конвективные ячейки. В верхнем слое ячейки перемещение вещества совершается практически в горизонтальной плоскости, и именно этот слой течения устанавливает горизонтальное передвижение вещества астеносферы и размещённых на ней плит. Есть 3 типа взаимного передвижения плит: схождение (конвергенция), расхождение (дивергенция) и сдвиговые смещения по поперечно-трансформным разломам. В разломах среди плитами земной коры иногда случаются землетрясения, вулканическая деятельность, горозарождение, создание океанских впадин. Накопление знаний о движении фрагментов земной коры породило целую науку тектонику, хоть и являющуюся разделом геологии, но развивающейся столь бурно, что зачастую формально наползает, подобно предмету изучения на то, от чего откололась. Хорошего в этом мало, лишние термины, за которыми нет содержания, только запутывают, а не проясняют. Если убрать из тектоники не относящиеся к ней понятия сейсмичности, вулканизма (магматизма), заменить термин тектоника в узком смысле «движение» на динамику, от понятия «тектоника» даже в широком смысле (строение, движение) ничего не останется. Ведь структуру (строение) земной коры с успехом и без тектоники изучает старая добрая геология. Поэтому лучше придерживаться старых определений, хотя бы не лишённых логики. Не движение тектонических плит (движение движущихся), а движение плит литосферных. В состав большинства плит входит как материковая, так и океаническая кора. В поясах раскрытия океанского дна возникает новая кора, становящаяся твёрдой оболочкой Земли, а в областях опускания одного блока литосферы под другой (субдукции) поглощается старая кора. На современном этапе литосфера подразделяется на много литосферных участков, однако 90% поверхности Земли попадает на основные восемь из 13 крупнейших плит. Помимо них существуют 47 плит среднего размера, 13 микроплит. Самые проворные из крупнейших океанские плиты; плита Кокос перемещается в год на 75 мм (по другим данным 85,5 мм), а тихоокеанская плита – на 52-69 мм за год (по другим данным 82 мм и даже 100мм). Не отстаёт от них и Индостанская – 87мм в год. Наряду с ними скорость движения Австралийской плиты также весьма высока – 67 мм за год, а в периоды землетрясений – около 40 метров сразу! Но быстрее всех разбегаются плиты близ Восточно-Тихоокеанского хребта около острова Пасхи – до 180 мм/год (плита Наска). То есть выбор скорости литосферных плит – это выбор источника информации и метода оценки. Вероятно-утвердительно самой «быстрой» на годовой дистанции можно считать плиту Наска, обогнавшую Тихоокеанскую. А вот «спринтером» в течение коротких землетрясений – несомненно, Австралийскую литосферную плиту.
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Литосфера Земли не является сплошной оболочкой. Она разделена на небольшое число относительно тонких жестких плит, движущихся по поверхности планеты под воздействием конвективных течений в ее мантийной оболочке и взаимодействующих друг с другом своими краевыми частями.
Скорости перемещения литосферных плит по порядку величины составляют несколько сантиметров в год. Хотя эти скорости кажутся незначительными, большая часть всех происходящих на планете землетрясений, вулканических извержений и горообразовательных процессов происходит именно в области межплитовых границ. Соответственно именно современная сейсмическая и вулканическая активность является основным критерием выделения границ литосферных плит.
На рис. 1 показана одна из существующих схем разделения литосферы Земли на жесткие плиты. По характеру взаимодействия смежных плит границы между ними могут относиться к одному из трех типов – дивергентному, конвергентному или трансформному.
Там, где литосферные плиты расходятся, освобождающееся между ними пространство заполняется поднимающимся снизу веществом астеносферы и его выплавками. Такие границы называются дивергентными. В океанах им соответствуют срединноокеанские хребты с рифтовыми зонами на гребнях. Если дивергентная граница пересекает материк, то над ней возникает континентальная (материковая) рифтовая зона.
В геологической литературе дивергентные границы плит часто называют конструктивными, поскольку на них идет наращивание океанской коры, а конвергентные – деструктивными, поскольку на них, напротив, океанская кора (и литосфера в целом) погружается в мантию на переплавку. Однако данные термины не слишком удачны. Действительно, хотя на дивергентных границах океанская кора наращивается, этому неизбежно предшествует деструкция континентальной коры (именно такой процесс идет в материковых рифтовых зонах, которые также относятся к дивергентным межплитовым границам). Напротив, на конвергентных границах океанская литосфера уничтожается, но за счет ее переплавления в мантии рождается континентальная кора. По указанным причинам предпочтительно употреблять термины дивергентные и конвергентные границы, отражающие лишь направление движения смежных плит, а не процессы, происходящие на межплитовых границах.
Третий и последний тип границ литосферных плит – трансформный. На трансформных границах не происходит ни наращивания, ни поглощения литосферы, плиты просто скользят друг относительно друга. Свое название они получили из-за того, что, как правило, соединяют (трансформируют) границы других типов – чаще всего дивергентные, реже конвергентные или дивергентные с конвергентными.
Рис. 1. Литосферные плиты Земли.
1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.
Существуют более генерализованные модели с меньшим, чем 13, числом выделяемых литосферных плит. Дело в том, что сейсмичность, магматизм и скорость взаимодействия плит на разных границах имеют различную интенсивность. Четкие критерии того, насколько значимым должен быть каждый из перечисленных показателей, чтобы проводить межплитовую границу, отсутствуют. Например, раздвиговые движения по дивергентной границе, разделяющей Африканскую и Сомалийскую плиты (Восточно-Африканской рифтовой системе), относительно мало интенсивны, поэтому часто связанную с этой границей тектоно-магматическую активность рассматривают как внутриплитовую и, следовательно, отдельную Сомалийскую плиту не выделяют, считая ее частью Африканской (см. рис. 1).
По другой версии существует 7 крупных литосферных плит и около 10 плит меньшего размера (см. рис. 2).
Рис. 2. Тектоническая карта. Движение плит
Когда литосферные плиты в одном месте расходятся, то в другом месте их противоположные края сталкиваются с другими литосферными плитами. Более тонкая океаническая литосферная плита “подныривает” под мощную материковую литосферную плиту, создавая на поверхности глубокую впадину или жёлоб.
Так ряд ученых считают, что более 90 % поверхности Земли покрыто 14-ю крупнейшими литосферными плитами: Австралийская плита, Антарктическая плита, Аравийский субконтинент, Африканская плита, Евразийская плита, Индостанская плита, Плита Кокос, Плита Наска, Тихоокеанская плита, Плита Скотия, Северо-Американская плита, Сомалийская плита, Южно-Американская плита, Филиппинская плита.
Плиты среднего размера: Адриатическая плита, Алашаньская плита, Амурская плита, Анатолийская плита, Афганская плита, Бирманская плита, Галапагосская плита, Гренландская плита, Джунгарская плита, Зондская плита, Индокитайская плита, Индонезийская плита, Иранская плита, Карибская плита, Каролинская плита, Китайская плита, Мадагаскарская плита, Марианская плита, Монгольская, Новогебридская плита, Окинавская плита, Ордосская плита, Охотская плита, Памирская плита, Панонская плита, Плита Альтиплано, Плита Вудларк, Плита Горда, Плита Исследователя, Плита Кермандек, Плита Манус, Плита Маоке, Плита Ривера, Плита Соломонова моря, Плита Тонга, Плита Хуан де Фука, Североандская плита, Сейшельская плита, Таджикская плита, Таримская плита, Тибетская плита,Тиморская плита, Тянь-Шанская плита, Ферганская плита, Эгейская плита, Южно-Китайская плита.
Рис. 3. Литосферные плиты
Однако такой подход с геодинамической точки зрения часто не оправдан по двум причинам. Во-первых, в случае с микроплитами нет уверенности, что их деление осуществляется на уровне литосферы, а не на уровне, например, коры или даже верхней части коры. В этом случае пропадает одно из важнейших условий, придающих строгость тектонике плит – постулат о жесткости (монолитности) литосферы. Во-вторых, даже если допустить делимость микроплит на уровне литосферы, то механизм перемещений и взаимодействий крупных и средних литосферных плит с поперечными размерами, на порядок превышающими мощность, и микроплит, у которых поперечные размеры и мощность сопоставимы, оказывается существенно различным.
Существует еще одно предположение что, основными, наиболее крупными и стабильными участками земной поверхности являются восемь литосферных плит:
Индо-Австралийская плита – на ней находится Австралия и окружающая её часть океана, доходящая до полуострова Индостан. В настоящее время отмечено движение данной литосферной плиты к востоку с севера со скоростью 67 миллиметров в год;
Антарктическая плита – занимает южную часть планеты, на ней находится Антарктида и примыкающие к ней участки океанической коры. Данная плита является относительно стабильной, так как окружена срединно-океаническими хребтами, а другие литосферные плиты удаляются от неё;
Африканская плита – на ней находится Африканский континент, а также участок океанической коры, занимающий часть дна Индийского и Атлантического океанов. При этом в северо-восточной своей части эта плита фактически раскалывается – почти отдельную плиту уже составляет территория Аравийского полуострова. Соседние с Африканской плитой литосферные плиты удаляются от неё, сама же она в северной части погружается в мантию со скоростью 27 миллиметров в год;
Евразийская плита – на ней находится основная территория Евразийского континента, к этой плите не относятся полуостров Индостан, Аравийский полуостров и северо-восточный «угол» континента. Наиболее крупная по содержанию континентальной коры литосферная плита на Земле;
Индийская плита – на ней находится полуостров Индостан, данная плита средних размеров примерно 90 миллионов лет назад начала двигаться от Мадагаскара на север со скоростью 200 миллиметров в год (такая высокая скорость обусловлена меньшей толщиной плиты), а около 50 миллионов лет назад начался процесс её столкновения с Евразийской плитой. В результате столкновения появились Тибетское нагорье и Гималаи. Индийская плита продолжает движение на северо-восток со скоростью 50 миллиметров в год, тогда как Евразийская плита «убегает» от неё на север лишь со скоростью 20 миллиметров в год. К тому же у Индийской плиты есть три зоны субдукции: в одной она погружается в мантию со скоростью 55 миллиметров в год, в другой — со скоростью 67 миллиметров в год, в третьей — со скоростью 87 миллиметров в год;
Тихоокеанская плита — на ней находится участок океанической коры, составляющей дно Тихого океана. В районе Калифорнии плита движется на север со скоростью 55 миллиметров в год. При этом размеры Тихоокеанской плиты постоянно сокращаются за счёт того, что у неё существует сразу несколько зон субдукции: под Евразийскую плиту она погружается в мантию со скоростью 75 миллиметров в год; под Индийскую — со скоростью 82 миллиметра в год; под Северо-Американскую — со скоростью 35 миллиметров в год; под средних размеров Филиппинскую литосферную плиту — со скоростью 12 миллиметров в год;
Северо-Американская плита — на ней находится Североамериканский континент, северо-западная часть Атлантического океана, примерно половина Северного Ледовитого океана и северо-восточный «угол» Евразии;
Южно-Американская плита — на ней находятся Южная Америка и часть дна Атлантического океана, образовалась около 70 миллионов лет назад в результате раскола древнего суперконтинента Гондваны. Имеет зону субдукции, в которых кора погружается в мантию со скоростью 19 миллиметров в год и 5 миллиметров в год.
Следует иметь в виду, что понятие “литосферная плита” ни в коем случае не тождественно понятию “материк”, даже если первая и второй имеют одинаковые названия. Как видно на рис. 1, почти все литосферные плиты имеют смешанный тип и включают в себя как континентальную, так и океанскую части.
Есть даже плита (Индийская), захватывающая сразу два материка – частично Евразию (Индостан) и целиком Австралию. Можно назвать лишь три почти чисто океанских плиты – самую крупную литосферную плиту Земли Тихоокеанскую и две более мелких – Кокос и Наска. Есть одна почти чисто континентальная плита – Аравийская. Все остальные литосферные плиты Земли, как уже говорилось, имеют смешанный тип.
Россия расположена на четырех литосферных плитах.
- Евроазиатская плита – большая часть западной и северной части страны,
- Северо-Американская плита – северо-восточная часть России,
- Амурская литосферная плита – юг Сибири,
- Охотоморская плита – Охотское море и его побережье.
Рис. 4. Карта литосферных плит России
В строении литосферных плит выделяются относительно ровные древние платформы и подвижные складчатые пояса. На стабильных участках платформ расположены равнины, а в области складчатых поясов находятся горные хребты.
Россия расположена на двух древних платформах (Восточно-Европейской и Сибирской). В пределах платформ выделяются плиты и щиты. Плита – это участок земной коры, складчатая основа которой покрыта слоем осадочных пород. Щиты, в противоположность плитам, имеют очень мало осадочных отложений и только тонкий слой почвы.
На территории России располагаются крупнейшие в мире равнины: Восточно-Европейская и Западно-Сибирская, которые разделяются складчатыми Уральскими горами. На юго-западе – обширная Прикаспийская низменность, наиболее низкие ее части находятся ниже уровня Мирового океана на -28м, а Западно-Сибирская, Печерская и Причерноморская низменности поднимаются над его уровнем не более 100-200 м. Большая часть территории России представляет собой амфитеатр, наклоненный к северу. Вдоль южных границ страны протягивается пояс высоких гор Кавказа, Алтая, Саян. Примыкающие к ним равнины и имеют отчетливо выраженный наклон к северу. На севере и северо-востоке, вдоль побережья морей Северного Ледовитого океана располагаются: Северо-Сибирская низменность, а также Яно-Индигирская и Колымская низменности. Высотные их отметки изменяются в пределах 40-50 и до 100 м. Почти половина территории России, лежащая восточнее Енисея, занята горными сооружениями, обширными и невысокими плоскогорьями и межгорными понижениями. Восточнее Енисея простирается Среднесибирское плоскогорье (в пределах плато Путорана), достигающее высоты 1701 м. С юга к плоскогорью примыкают горы Алтая (г. Белуха, 4506 м), Саян, Прибайкалья и Забайкалья, Становое нагорье. Высотные отметки достигают: 2930 м (Западный Саян); 3491 м — г. Мунку-Сардык. На юго-востоке, за горами Забайкалья — Зейско-Буреинская и Нижне-Амурская равнины, которые отделяют хребты Алданского нагорья от хребтов Сихотэ-Алиня. Крайний северо-восток большей частью горист (горы Верхоянские, Черского, Колымские, Чукотские), а крайний восток представлен гористым полуостровом Камчатка (наиболее высокий действующий вулкан – Ключевская сопка – 4750 м), Курильскими островами и островом Сахалин.
Вдоль берегов Северного Ледовитого океана располагаются возвышенные или гористые острова: Врангеля, Новосибирские и Ляховские, Северной Земли, Земли Франца-Иосифа. Севернее Северо-Сибирской низменности, в пределах Таймырского полуострова простираются горы Бырранга с вершиной Ледниковая в 1146 м.
- Аплонов С.В. А76 Геодинамика: Учебник. – СПб.: Изд-во С.-Петерб. ун-та, 2001. – 360 с.;
- «Вестник Краунц. Науки о земле». 2008 №1. Выпуск №11. «Блоковая структура и геодинамика континентальной литосферы на границах плит». Ю.Г. Гатинский, Д.В. Рундквист, Г.Л. Владова, Т.В. Прохорова, Т.В. Романюк, 2008.;
- Курошев Г.Д. К93 Космическая геодезия и глобальные системы позиционирования. Учебное пособие. – СПб.: Изд-во С.-Петерб. Ун-та, 2011, — 182 с.;
— крупнейшие устойчивые блоки земной коры, разделённые подвижными областями и гигантскими разломами.
Литосферные плиты передвигаются по пластичному слою верхней мантии с малой скоростью (несколько сантиметров в год).
Литосферные плиты имеют разные размеры. Границы литосферных плит не совпадают с очертаниями материков, проходят они на суше по горным поясам, в океанах — по срединно-океаническим хребтам.
Литосферные плиты могут расходиться или сталкиваться.
При столкновении двух литосферных плит с материковой корой края этих плит сминаются в складки, и образуются горы. При столкновении литосферных плит, одна из которых — с материковой корой, а другая — с океанической, образуются глубоководные желоба и островные дуги.
При расхождении литосферных плит на суше образуются разломы (рифты). В океанах в зонах разломов поднимаются мощные потоки магмы, которая, застывая, наращивает края литосферных плит. Так, например, расширяется ложе Атлантического океана.
На границах литосферных плит часто происходят землетрясения и извержения вулканов.
— каменная оболочка Земли, включающая земную кору и верхнюю часть мантии.
Мощность литосферы под континентами составляет порядка км, под океанами — от нескольких километров до (150) км. В целом под континентами она толще, чем под океанами.
Под литосферой располагается качественно иное вещество. Это более мягкие тестообразные породы, разогретые до высоких температур. Слой таких пород называют .
— крупнейшие блоки литосферы, разделённые глубинными разломами.
Литосфера не является единым целым, она состоит из крупных блоков — литосферных плит. Между ними расположены глубокие разломы. Учёные определили, что современная литосфера состоит из (7) огромных и нескольких более мелких литосферных плит. Плиты не стоят на месте, а медленно сходятся и расходятся по отношению друг к другу. Перемещаться им помогает пластичный слой мантии. Скорость таких перемещений небольшая — около (5) см в год.
Столкновения или отдаления материков происходят благодаря движению литосферных плит.
- Что такое движение литосферных плит
- Особенности движения литосферных плит
- Причины движения литосферных плит
- Какие факты доказывают движение литосферных плит
- Направления движения литосферных плит
- Горизонтальное движение литосферных плит
- Вертикальное движение литосферных плит
- Скорость движения литосферных плит
- Район, где скорость движения литосферных плит наибольшая
- Последствия движения литосферных плит
- Что такое литосфера
- Что такое литосферная плита
- Главные литосферные плиты Земли
- Границы между литосферными плитами
- Австралийская литосферная плита
- Антарктическая литосферная плита
- Африканская литосферная плита
- Евразийская литосферная плита
- Индостанская литосферная плита
- Литосферная плита Кокос
- Литосферная плита Наска
Что такое движение литосферных плит
Движение литосфертных плит или тектоника плит – это процесс перемещения, сталкивания и наслаивания литосферных плит (целостных блоков земной коры) относительно друг друга. Плиты, входящие в состав земной и океанической коры покрывают нашу планету замысловатой мозаикой и находятся в непрерывном хаотичном движении. Именно они ответственны за изменение рельефа и климата планеты: появление гор, вулканов, подводных впадин и т.д.
Впервые о горизонтальном движении коры заговорили в 20х годах прошлого века при возникновении теории дрейфа континентов Альфреда Вегенера. Тогда он заметил, что очертания берегов на картах с противоположными сторонами Атлантического океана имеют визуальное сходство, что Африка и Южная Америка ранее были единым целым. Сегодня – эта общепринятая научным миром концепция о земных процессах.
Движение плит отвечает за следующие геологические процессы:
- Геологические разломы и складки.
- Магматизм – образование и выход расплавов при вулканических извержениях. Он формирует земную кору.
- Землетрясения – поверхностные толчки и колебания. Появляются на окраинах тектонических плит, отражают процесс изменения планеты и являются причинами стихийных бедствий.
- Образование нового запаса полезных ископаемых и другие геологические чудеса.
Особенности движения литосферных плит
Литосферные плиты перемещаются преимущественно в океанической земной коре. В местах спрединга (расширения коры) – они расходятся, а в зонах субдукции (поглощения коры) – плиты наслаиваются и сминаются.
Поверхностный слой планеты разделен на 2 оболочки:
- Литосфера. Ее дно имеет одинаковую, постоянную температуру в 1300°С. Породы в этой твердой прослойке снабжены жесткой структурой, им труднее деформироваться.
- Астеносфера. Самый пластичный слой, он позволяет верхним блокам скользить по своей поверхности, подчиняясь закону Архимеда (когда на объект действует выталкивающая сила равная весу вытесненного объектом).
Почти вся земная поверхность разделена на 8 объемных плит, десятки средних и осколки мелких. Все они непрерывно движутся по удобной подвижной поверхности астеносферы. В их границах пролегают участки с сейсмической, магматической и тектонической активностями. Старые литосферные плиты со временем полностью «переплавляются» недрами земли. Например, как древнейшая океаническая литосферная плита Фаралон, которая некогда выстилала дно Тихого океана. Сейчас она полностью уничтожена в зоне судбукции под обеими Америками.
Причины движения литосферных плит
Главной причиной движения литосферных плит служит мантийная конвекция – неторопливое наползание твердой силикатной мантии. Его вызывают конвекционные потоки, доставляющие тепло от центра Земли к ее поверхности, тем самым Земля отдает лишнее тепло поверхности.
Конвекционные потоки получают энергию от разности температур земного ядра и коры. Горячие породы из центра Земли расширяются, их плотность становится меньше, что делает их легче и они постепенно всплывают. На их место опускаются более прохладные и тяжелые массы, они уже отдали часть своего тепла поверхности планеты.
Этот процесс непрерывен, он упорядочивает и замыкает конвекционное ячейки (возникают от различия в плотности). Данная часть течения ответственна за горизонтальное перемещение расположенных на астеносфере литосферных плит. Именно конвективные течения двигают плиты активнее всего.
Еще одним фактором перемещения плит является их соскальзывание под наклоном в астеносферу. Потому, что отдельными частями плиты приподняты в зонах хребтов и опущены в местах погружения. На их пластичную подошвенную поверхность дополнительно действует сила гравитации, поэтому плиты легко соскальзывают и наслаиваются друг на друга.
Бывает, что тяжелую прохладную океаническую литосферу затягивает в раскаленную, но не достаточно плотную астеносферу в субдуктивных зонах.
Какие факты доказывают движение литосферных плит
По теории дрейфа континентов, считается, что изначально суша на Земле существовала в виде единого огромного континента Пангеи. Но примерно 190 млн. лет он распался на составные части (новые материки), которые перемещались согласно движению литосферных плит под ними и приняли знакомый нам сегодня вид. Места раскола единого континента заполнили океаны и моря. Территория современного Тихого океана, например, считается самой древней водной частью, он существовал на своем месте еще во времена Пангеи.
На раскопках в Африке и Южной Америке (эти материки имеют наибольшую схожесть в очертаниях при разломе) были обнаружены кости листозавров (древних пресмыкающихся). Эти животные водились исключительно в пресной воде и не смогли бы пересечь соленый океан. Значит, когда-то их предков просто разделил континентальный разлом. Аналогичные находки были сделаны и в растительном мире, так ископаемые части папоротника «Glossopteris» были найдены на всех континентах ниже экватора.
Движение современных плит отслеживают с помощью GPS-приемников методом космической геодезии. Точность метода – до сотых долей миллиметра.
Виды движения литосферных плит
Существует 3 вида перемещения плит:
- Расхождение (дивергенция). Вдоль границ расхождения происходит раздвижение плит и появление грабенообразных структур: подводных горных цепей и пропастей. Земная кора на таких участках горизонтально растягивается, на ней появляются щели, протяженные линии или впадины (рифтогенез), осуществляется активный вулканизм.
- Схождение (конвергенция). Схождение плит происходит в зоне субдукции, когда менее мощная океаническая кора (5–15 км) продавливается более тяжелой континентальной корой (35–80 км). В результате схождения появляются глубоководные впадины и дуги островов (цепочки вулканических островов) и архипелагов, а на суше растут горные хребты. До 80% всех границ конвергенции приходится на эти зоны.
- Перемещения со сдвигами в противоположные направления.
Направления движения литосферных плит
Направления движения плит зависят от типа их перемещения.
Различают 3 типа перемещения:
- Дивергентное – плиты расходятся в противоположные стороны.
- Конвергентное – одна плита наслаивается на другую или они вместе сминаются (коллизия).
- Скользящее – плиты перемещаются вдоль разлома коры.
В местах, где плиты двигаются параллельно, но с разной скоростью возникают огромные сдвиговые нарушения – трансформные разломы. На дне океана они движутся под углом в 90 градусов к срединно-океаническим хребтам и разбивают их на отрезки в 400 км. В этих участках и существует самая активная зона трансформного разлома, она заявляет о себе активными землетрясениями с появлением складок и грабенов, подводными выбросами различных газов.
Горизонтальное движение литосферных плит
Изначально Земля состояла из кратонов, первых блоков континентальной коры. В эру Архея кратоны начали первое горизонтальное перемещение по поверхности планеты. Дальнейшее движение плит постепенно усложнялось.
Рифтогенез – процесс горизонтального движения и растяжения литосферых плит.
Рифты бывают континентальными или срединно-океаническими (хребты). Они образовываются в местах растягивания земной коры.
Рядом с рифтами всегда образовывается новая океаническая кора, когда из астеносферы выходят базальтовые расплавы мантийного вещества. В ходе дальнейшего спрединга поступают все новые дозы расплавленной магмы (конвекция), позже они застывают и постепенно наращивают края соседних листосферных плит. Этот процесс происходит непрерывно.
Таким образом – вязкая магма переносит на поверхность от центра планеты тепло, попутно двигая литосфеные плиты. Земля естественным образом охлаждается, поддерживает жизнь всех своих обитателей и постоянно меняет свой рельеф. Эта ее деятельность схожа с работой теплового двигателя или обогревателя.
Вертикальное движение литосферных плит
Вертикальное движение плит происходит с опусканием или подниманием краев литосферных плит. Данное движение характерно для обоих видов земной коры и континентальной и океанической. Оно меняет рельеф планеты по краям плит: высоту уровня моря и глубину океанического дна.
Суша медленно опускается на дно, затапливая обширные участки и города, где становится морским дном (множественные участки в Эгейском море). При вздыбливании морского дна прибрежная площадь суши увеличивается, возникают новые острова, например, в Балтийском море.
Вертикальное направление способно меняться, то поднимаясь, то опускаясь со временем. На равнинных участках Земли вертикальное движение практически незаметно, зато его отчетливо видно в горах (они растут на несколько сантиметров в год).
Скорость движения литосферных плит
Скорость астеносферного течения зависит от ее вязкости и мощности, оно отвечает за «волочение» тектонических плит под океанами и под континентами.
Существуют 2 механизма движения литосферных плит:
- Силы мантийного «волочения» (горизонтальное движение). Могут существовать на любой точке в подошве плиты. Его скорость – приблизительно 1-6 см в год.
- Силы, действующие на края плит (вертикальное движение). Требуются сотни лет, чтобы увидеть их результат.
Самая низкая мощность астеносферы замечена под древними континентами (материковыми щитами), в этих местах ее практически нет, поэтому континенты как бы приросли к поверхности планеты и «сели на мель». Плиты под ними практически не движутся и тормозят движение соседних участков плит.
Самые подвижные и скоростные плиты – сплошь океанические, их скорость до 18 см в год (Тихоокеанская, Кокос, Наска). Менее подвижными являются те, в чьем составе есть массивные континенты – 1-1,5 см в год (Евразия, Северная и Южная Америки, Африканская).
Скорость движения плиты увеличится, если любая ее часть сильно кренится к астеносфере в зоне субдукции, таким образом, под собственной тяжестью она ускорят свое погружение. Но это редкое эпизодическое явление, для него нужны особые геодинамические условия.
Район, где скорость движения литосферных плит наибольшая
Наибольшую скорость (18 см в год) имеют плиты расположенные по соседству с Восточно-Тихоокеанским хребтом в активной сейсмической зоне. Данную зону за ширину склона и обширную протяженность принято именовать поднятием, а не хребтом. Остров Пасха – самая высокая точка поднятия (539 м над уровнем моря). Его южная часть является самым быстрорастущим отрезком среди остальных срединно-океанических хребтов планеты.
Последствия движения литосферных плит
Планета постоянно совершенствует себя, поэтому все континенты соединяются в один огромный суперконтинент примерно каждые 500 млн. лет. Очертания современных 6 материков появились около 200 млн. лет назад из-за раскола Пангей. Сейчас они максимально разъединены, зато океаны продолжают вести свою подводную деятельность по расширению своих границ.
Поверхность Земли давно признана нестабильной и чрезвычайно подвижной, это касается и изменения положения континентов. Зная скорость движения литосферных плит и скорость поглощения дна океана относительно полюсов, можно рассчитать примерный путь перемещения континентов в будущем.
Есть предположение, что примерно через 50 млн. лет часть расколотого из-за глобальных разломов Африканского континента переместится на север и ликвидирует Средиземное море, в итоге полностью исчезнет Гибралтарский пролив, сомнется Италия, а Испания больше не будет крайней точной Европы. Индия продолжит наступление на Азию, отчего Гималаи станут еще выше, а Индийский океан увеличится за счет Тихого. Калифорния через разлом Сан-Андреас полностью дистанцируется от Северной Америки, между ними появится новый океанический бассейн. Австралия сблизится вплотную с Евразией. Что касается Евразии, то уже сейчас на дне Байкала идут медленные тектонические изменения, которые в далеком будущем расколют континент надвое.
Что такое литосфера
В составе Земли есть 4 главных сферы, зависящие друг от друга. К ним относятся гидросфера, биосфера, атмосфера и литосфера. Последняя является твердой оболочкой нашей планеты. Сверху нее расположена атмосфера, снизу – астеносфера (слой в верхней мантии Земли).
Литосфера делится на плиты, которые постоянно перемещаются. В основном тектоническая активность наблюдается на границах плит. Их движение обеспечивается тепловой энергией от мантийной области литосферы.
Что такое литосферная плита
Литосферная плита – крупный стабильный участок земной коры, часть литосферы.
Земная кора – верхняя часть литосферы. Существует два типа земной коры – материковая и океаническая. Отличаются они друг от друга толщиной и строением. Толщина материковой коры составляет 30-40 км. Она состоит из 3 слоев: осадочного, гранитного и базальтового. Океаническая имеет толщину в 3-7 км, содержит осадочный и базальтовый слои.
Ниже земной коры расположена мантия, которая состоит из верхней и нижней частей. Границы нижней находятся на глубине около 2900 км. Температура вещества мантии доходит до 800-2000 ⁰C. Центр Земли – ядро. Нижняя граница его располагается на глубине 6371 км, средний радиус – 3500 км. Состоит оно из внешнего жидкого и внутреннего твердого ядра. Температура внутри него составляет около 6000 ⁰C.
Главные литосферные плиты Земли
На данный момент Земля состоит их 7 больших литосферных плит: Североамериканской, Южноамериканской, Африканской, Австралийской, Антарктической и Тихоокеанской. Кроме того, выделяют 7 плит меньших по размеру. К ним относятся Кокос, Наска, Скотия, Карибская, Аравийская, Филиппинская и Каролинская.
Границы между литосферными плитами
Границы между плитами бывают нескольких видов:
- дивергентные – когда плиты отодвигаются друг от друга;
- конвергентные – плиты движутся навстречу друг другу;
- трансформные – обеспечивает связь между двумя предыдущими – плиты скользят относительно друг друга.
Австралийская литосферная плита
Эта литосферная плита имеет в составе австралийский континент, части Новой Гвинеи, Новой Зеландии и бассейн Индийского океана. Площадь, которую занимает плита, составляет примерно 47 млн км2. Она движется со скоростью около 6,2-7 см в год.
Изначально была соединена с Индией и Антарктидой. Это происходило до тех пор, пока около 100 млн лет назад от нее не откололась Индия и 85 млн лет назад – Антарктида. Позднее Австралийская плита слилась с Индийской, образовав Индо-Австралийскую плиту. Но, как показывают исследования, эти плиты снова разделились.
На северо-востоке Австралийская плита граничит с Тихоокеанской, на юге – с Антарктической.
Антарктическая литосферная плита
Антарктическая плита находится на южной части Земли. В ее составе – антарктический континент и океаническая кора, в том числе Кергеленское плато. Размер плиты – примерно 60,9 млн км2.
Антарктическая плита около 40 млн лет назад была соединена с Австралийской. Сейчас вокруг нее есть множество разломов из-за движения плит. Она со скоростью 1,2-1,4 см в год перемещается на северо-восток.
Эта плита имеет общую границу с Южно-Американской и плитой Наска. Причем Антарктическая частично погружается под Южно-Американскую, что приводит к тому, что поднимается Патагония.
Африканская литосферная плита
Эта плита включает в себя африканский континент и океаническую кору, которая образует дно Индийского и Атлантического океанов. В большинстве своем границы Африканской плиты дивергентные. Площадь плиты составляет примерно 61,3 млн км2. Скорость ее движения составляет примерно 2,15 см в год.
Несколько лет назад ученые обнаружили, что Африканская плита начала двигаться к Евразийской. Причем северная часть первой уже погрузилась под вторую. Эти процессы влияют на сейсмоактивность: в зоне движения плит возникают землетрясения.
Евразийская литосферная плита
В состав этой плиты входит большая часть соответствующего континента. К ней не относятся Индостан, Аравийский п-ов, часть северо-восточной Евразии.
В северной области плиты находится материковая отмель крупных размеров, которая переходит в воды Северного Ледовитого океана и граничит с хр. Геккеля. В южной части располагается большая горная цепь, которая появилась как следствие столкновения Евразийской и Индостанской плит.
Эта плита покрывает значительную территорию Земли – около 67,8 млн км2. В ее составе материковая кора занимает самое большое место из всех плит. Скорость движения Евразийской плиты составляет примерно 7-14 мм в год.
Восточная сторона плиты граничит на севере с Североамериканской плитой и Филиппинской – на юге. Южная ее сторона – это граница с Африканской литосферной плитой на западе и Аравийской – в центре. Западная сторона представляет собой границу с Североамериканской плитой.
Расхождения границ Евразийской и Североамериканской плит вызвали извержения вулканов в Исландии (Элдфелла в 1783 г. и Эйяфьятлайокудля в 2010 г.).
Индостанская литосферная плита
Другое название – Индийская. Она расположена на экваторе в восточном полушарии. Индостанская плита включает в себя большую часть южной Азии и часть бассейна под Индийским океаном. Эта плита имеет средние размеры – примерно 11,9 млн км2.
Около 55 млн лет назад она была объединена с Австралийской плитой.
Индостанская литосферная плита двигается в северо-восточном направлении со скоростью около 2,6-3,6 см в год. Из-за столкновения с Евразийской плитой образовались Тибетское нагорье и Гималаи.
Движение плит в этой области вызвало крупные землетрясения. В 2004 г. случился катаклизм в Индийском океане. В результате горные породы переместились на 15 м, а также произошел подъем дна моря, что вызвало крупное цунами. В 2005 г. случилось землетрясение в Пакистане. Жертвами его стали несколько десятков тысяч человек.
Литосферная плита Кокос
Эта плита находится на востоке Тихого океана. Она занимает область от п-ова Калифорния до Панамского перешейка. У этой плиты нет материковой части, только океаническая. Площадь ее – около 2,9 млн км2. Движется плита Кокос со скоростью 6,7 см в год.
Из-за погружений одних участков земной коры под другие часто случаются землетрясения в зоне Кокоса. Одним из крупных катаклизмов такого рода было землетрясение в Мехико в 1985 г. Его спровоцировал разрыв в этой плите. В результате около 10 тысяч человек погибло, более 400 зданий было разрушено.
Литосферная плита Наска
Эта плита находится на востоке Тихого океана. Она так же, как и Кокос, имеет земную кору океанического типа. Названа она была в честь одного из регионов Перу. Занимает площадь около 15,6 млн км2. Скорость перемещения – примерно 4-5,3 см в год.
В результате движения плиты Наска появилось несколько вулканических островов и горные подводные цепи, проходящие под Южной Америкой. Эта литосферная плита является относительно молодой: она отделилась от плиты Фараллона примерно 23 млн лет назад. Самым древним породам Наски около 50 млн лет.