Среднефокусные землетрясения

Среднефокусные землетрясения Землетрясения

Как измеряют землетрясения в баллах

В разных странах принято по-разному оценивать интенсивность землетрясения.

  • В России и некоторых других странах принята 12-балльная шкала Медведева — Шпонхойера — Карника.
  • В Европе — 12-балльная Европейская макросейсмическая шкала.
  • В США — 12-балльная модифицированная шкала Меркалли.
  • В Японии — семибалльная шкала Японского метеорологического агентства.

Шкала Рихтера

Первую шкалу магнитуды землетрясений предложил американский сейсмолог Чарльз Рихтер в 1935 году, поэтому в обиходе значение магнитуды называют шкалой Рихтера. Шкала представляет собой логарифмическую шкалу, которая измеряет магнитуду землетрясений на основе амплитуды движения грунта, регистрируемой сейсмографами. Величина выражается в виде числа, причем каждое увеличение на единицу соответствует десятикратному увеличению движения грунта.

Сейсмограф — прибор, используемый для определения силы и направления и измерения землетрясения. Он состоит из сейсмометра — датчика, измеряющего движение грунта, — и устройства, которое записывает сигнал, производимый сейсмометром.

Проще говоря, сейсмограф подобен диктофону, который прослушивает землю и ведет запись. С той лишь разницей, что сейсмограф создает графический след волн землетрясения. Этот след затем можно проанализировать и определить величину и местоположение землетрясения.

Среднефокусные землетрясения

Шкала Медведева — Шпонхойера — Карника

Шкала Медведева — Шпонхойера — Карника (MSK-64) — это способ измерения интенсивности землетрясения, который представляет собой описание последствий подземных толчков на поверхности Земли и на искусственных сооружениях. Шкала была разработана в 1970-х годах советскими геологами и используется в основном на территории бывшего Советского Союза и Восточной Европы.

Землетрясения:  Землетрясение рисунок

Шкала варьируется от 1 до 12, при этом каждое увеличение на одну единицу соответствует увеличению интенсивности землетрясения. Каждый из уровней описывает количество повреждений зданий и степень движения грунта. Информация, полученная с помощью этой шкалы, используется агентствами по управлению стихийными бедствиями для планирования мер реагирования и восстановления, а также для оценки потенциального воздействия землетрясения.

Как баллы MSK-64 соответствуют разрушениям на поверхности

  • Не ощущается. Регистрируется только сейсмическими приборами.
  • Очень слабые толчки. Замечают только некоторые люди, находящиеся в полном покое на верхних этажах зданий, и домашними животными.
  • Слабое. Ощущается только внутри некоторых зданий, как сотрясение земли от проезжающего трамвая.
  • Интенсивное. Большинство людей замечает такое землетрясение. Можно наблюдать легкое колебание или дребезжание предметов быта, оконных стекол. Могут скрипеть двери и/или стены.
  • Довольно сильное. Ощущают многие даже вне зданий, а внутри — все. Шатается мебель, маятники часов останавливаются, могут появиться трещины в окнах и штукатурке.
  • Сильное. Ощущается всеми. Предметы падают с полок, а картины — со стен. Отдельные куски штукатурки откалываются.
  • Очень сильное. Появляются трещины в стенах домов, есть видимые повреждения.
  • Разрушительное. Образуются видимые трещины на крутых склонах и в сырой почве. Памятники сдвигаются, фабричные трубы не выдерживают и падают. Дома сильно повреждаются.
  • Опустошительное. Сильно повреждаются или рушатся каменные и кирпичные постройки. У деревянных домов нарушается геометрия.
  • Уничтожающее. Трещины в земле достигают ширины в метр. Возникают оползни и обвалы со склонов. Каменные здания рушатся. Ж/д рельсы искривляются.
  • Катастрофа. Появляются большие трещины в поверхностных слоях земли. Возникают многочисленные оползни и обвалы. Каменные дома и мосты почти полностью разрушаются.
  • Сильная катастрофа. Огромные изменения в земной коре: многочисленные трещины, обвалы, оползни. Меняется рельеф: возникают водопады, запруды, течение рек отклоняется. Ни одно сооружение не выдерживает.
Землетрясения:  Раскрытие тайн вулкана Ликанкабур: визуальное путешествие

Модифицированная шкала Меркалли в Европе и США

12-балльная европейская макросейсмическая шкала, также известная как шкала интенсивности Меркалли, была разработана в начале XX века итальянским сейсмологом Джузеппе Меркалли. Шкала также основана на наблюдении за воздействием землетрясения на окружающую среду и созданные человеком сооружения, такие как здания, дороги и мосты.

В то же время, определения различных уровней интенсивности в MSK-64 и Европейской шкалы могут немного отличаться. Например, MSK-64 основывается на количестве повреждений зданий в конкретном районе, в то время как определение того же уровня интенсивности по Европейской макросейсмической шкале учитывает и степень подвижек грунта, и количество повреждений искусственных сооружений.

В США тоже используют модифицированную шкалу Меркалли (Modified Mercalli Intensity, MMI). Она также основана на комбинации инструментальных показаний и наблюдений за воздействием землетрясения на окружающую среду и искусственные сооружения и варьируется от 1 (не ощущается) до 12 баллов (полный ущерб), но была изменена, чтобы лучше отражать последствия землетрясений именно в Соединенных Штатах.

Среднефокусные землетрясения

Японская шкала сейсмической интенсивности

Японское метеорологическое агентство (JMA) использует для измерения интенсивности землетрясений собственную шкалу сейсмической интенсивности, также известную как шкала Синдо. Шкала Синдо варьируется от 0 до 7 баллов и учитывает как показания приборов, так и наблюдения за воздействием землетрясения на искусственные сооружения и окружающую среду.

Шкала Синдо была названа в честь японского сейсмолога Кийо Синдо, который разработал шкалу в 1950-х годах. Шкала была разработана для отражения интенсивности землетрясений в Японии, где последствия землетрясений для сооружений могут значительно отличаться из-за уникальной географии страны и стиля строительства.

Цветом отображена глубина очага

Рис.26.14.Густота распределения эпицентров землетрясений

Силой более 3.5 балла

По глубине расположения очага землетрясения подразделяются на мелкофокусные — 0-70 км, среднефокусные — 70-300 км и глубокофо­кусные- 300-700 км — Самое глубокое расположение очагов зафиксировано на 720 км, по другим сведениям — 680-690 км). Деление это весьма условно и плохо увязано с особенностями внутреннего строения Земли.Большая частьочагов сильныхземлетрясений тяготеет к глубине 10-30 км. Подавляющее число землетрясений (85 %) происходит в об­становке сжатия и только 15 %- растяжения.

Большинство землетрясений происходит на глубине до 70 километров от поверхности Земли, меньше до 200 километров. Но бывают землетрясения и на очень большой глубине.Везде, где глубокие землетрясения случаются достаточно часто, они «вырисовывают» условную наклонную плоскость, названную по именам японского и американского сейсмологов зоной Вадати — Беньеффа. Она начинается вблизи земной поверхности и уходит в земные недра, до глубин порядка 700 километров. Зоны Вадати — Беньеффа приурочены к местам, где сталкиваются тектонические плиты — одна плита подвигается под другую и погружается в мантию. Зона глубоких землетрясений как раз и связана с такой опускающейся плитой. Глубинные наклонные зоны разломов, падающие под островные дуги, хорошо прослеживаются на глубину по очагам землетрясения и названы сейсмофокальной зоной.

Среднефокусные землетрясения

Среднефокусные землетрясения

Рис.26.15.Положение очага (слева) и строение сейсмофокальной зоны Беньоффа.Кружочки-гипоцентры землетрясений (справа)

Большая часть всех известных крупных землетрясений относится к тектоническому типу. Они связаны с процессами горообразования и движениями в разломах литосферных плит.Горные породы обладают определенной эластичностью, а в местах тектонических разломов — границ плит, где действуют силы сжатия или растяжения, постепенно могут накапливать тектонические напряжения. Напряжения растут до тех пор, пока не превысят предела прочности самих пород. Тогда пласты горных пород разрушаются и резко смещаются, излучая сейсмические волны. Такое резкое смещение пород называется подвижкой.Вертикальные подвижки приводят к резкому опусканию или поднятию пород. Обычно смещение составляет лишь несколько сантиметров, но энергия выделяемая при движениях горных масс весом в миллиарды тонн, даже на малое расстояние, огромна! На дневной поверхности образуются тектонические трещины. По их бортам происходят смещения относительно друг друга обширных участков земной поверхности, перенося вместе с собой и находящиеся на их поля, сооружения и многое другое. Эти перемещения можно увидеть невооруженным глазом, и тогда связь землетрясения с тектоническим разрывом в недрах земли очевидна. Есть основания предполагать, что своим происхождением СФЗ и составляющие их очаги землетрясений обязаны поддвиганию океанс­кой литосферы под континентальную и переходную Самые спокойные регионы — это чаще всего древние платформы.

Анализ пространственного размещения эпицентров землетрясений на поверхности Земли дает весьма сложную картину.Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии. Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне  к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.

Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах. Работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.

Среднефокусные землетрясения

Поиск по сайту:

Главная
О нас
Популярное
ТОП
Новые страницы
Случайная страница
Изречения для студентов
Пожаловаться на материал
Обратная связь
FAQ

Хотя магнитуда землетрясения и объем разрушений на поверхности земли коррелируют, будет неверно связывать их напрямую. Важно учитывать глубину очага землетрясения и другие параметры. Например, землетрясение, очаг которого находится на большой глубине, может очень слабо ощущаться на поверхности. Но землетрясение той же магнитуды с неглубоким очагом, может нести разрушительные последствия.

Классификация землетрясений

Землетрясения классифицируются по следующим признакам:

А) по происхождению: — тектонические, вулканические, моретрясения, космического происхождения, обвальные, наведенные;

Землетрясения могут возникать в результате тектонических и вулканичес­ких проявлений, обвалов (горные удары, оползни) и, наконец, в резуль­тате деятельности человека (заполнение водохранилищ, закачка воды в скважины).

Вулканические землетрясения являются следствием локального извержения лавы и взрыва газов. Они встречаются редко, слабы по интенсивности и имеют ограниченную сферу влияния.

Провальные или обвальные землетрясения вызываются обширными обвалами карстовых пустот внутри Земли, заброшенных рудников, выгоревших торфяников. При этом сейсмические волны имеют незначительную силу и распространяются на небольшие расстояния.

Землетрясения, связанные с ударами космических тел – результат ударов о Землю или взрывов в околоземном пространстве метеоритов, астероидов, комет .

Наведенные землетрясения – результат деятельности человека.

Моретрясение — очаг землетрясения находится на морском дне. Оно приводит к образованию высоких волн – цунами, которые достигают берега и приносят много бед прибрежным территориям.

Землетрясения активизируют вулканическую деятельность. За последние 500 лет от землетрясений погибло около 4,5 млн. человек.

Международная статистика землетрясений свидетельствует о том, что в период с 1947 по 1970 год погибло 151 тыс. человек, с 1970 по 1976 год – 700тыс. человек, а с 1979 по 1989 год погибло 1.5 млн. человек. В последних течение 40 лет в крупных землетрясениях на территории бывшего СССР и России (города Ашхабад, Ташкент, Спитак, поселок Нефтегорск) погибло более 150 тысяч человек, сотни тысяч были ранены. В результате землетрясения силой 6,1 балла, происшедшего в ночь с 8 на 9 января в г. Охе на севере Сахалина было разрушено 14 многоквартирных домов. 800 семей остались без крова. В те­чение двух часов было зафиксировано 7 толчков. В это время трясло не только Сахалин, но и остров Уруп на Курилах.

В августе 1999 г. произошло крупное землетрясение в Турции. Пост­радали Стамбул, несколько небольших городов, а г. Измит был разру­шен до основания. Погибли более 15 тыс. человек.

В сентябре того же года землетрясение силою 7,6 балла сотрясло ост­ров Тайвань. Разрушено 30 тыс. домов. Погибли более 2 тыс. человек. Уничтожена вся система энергоснабжения. Ненадежными оказались коммуникации, слабой огнеустойчивость зданий и плохой подготовлен­ность как администрации, так и людей к действиям в аварийных ситуа­циях.

Все эти землетрясения — тектонического характера, то есть вызван­ные перемещением масс земной коры.

В) по глубине расположения очаговземлетрясений бывают: — мелкофокусные (3-10 км), среднефокусные (10-15 км), глубокофокусные – (50-100 км);

Глубокофокусные землетрясения происходят на больших глубинах (около 700км). Изучены мало, очень мощные, но не представляют большой опасности.

Б) по интенсивности: слабые местные (4,5-5,5 баллов); средние локальные (5,5-6,5); сильные локальные (6,5-7,5); сильные региональные (6.5-7,5); глобальные (7.5-8.5) (классификация представлена в табл.5).

Немалый интерес представляет классификация землетрясений по балльности и по численности (частоте повторяемости) в тече­ние года на нашей планете (табл. 6).

В среднем в мире ежегодно происходят:

1 землетрясение силой до 9 баллов,

до 15 землетрясений — до 8 баллов,

до 140 — до 7 баллов,

до 900 — до 6 баллов,

до 8000 — до 5 баллов.

Последние землетрясения в Армении 1988 год и Иране 1990 год были интенсивностью до 8 баллов по шкале Рихтера

Кто исследует землетрясения

Существует множество компаний и организаций, которые занимаются исследованиями землетрясений — как частные, так и государственные.

  • Геологическая служба США (USGS) — научное агентство правительства США, которое предоставляет информацию о землетрясениях и других стихийных бедствиях. Геологическая служба США управляет Передовой национальной сейсмической системой (ANSS), национальной сетью сейсмических приборов, которые отслеживают землетрясения в США.
  • Обсерватория Земли Ламонт-Доэрти — исследовательское подразделение Колумбийского университета, специализирующееся на науках о земле и окружающей среде, включая исследования землетрясений.
  • Калифорнийский технологический институт (Калтех) — ведущий исследовательский университет, где находится сейсмологическая лаборатория, которая проводит исследования землетрясений и оценку сейсмической опасности.
  • Японское метеорологическое агентство (JMA) — национальное метеорологическое агентство Японии, отвечает за мониторинг землетрясений и их исследования в Японии.
  • Научно-геологические компании, такие как Schlumberger, Halliburton и CGG — используют методы сейсмической съемки для изучения подповерхностной структуры Земли.
  • Инженерные и консалтинговые компании, такие как Arup, MWH Global и GHD — специализируются на оценке сейсмической опасности и снижении рисков, а также на сейсмостойком проектировании и модернизации зданий.
  • Технологические компании, такие как Early Warning Labs, ShakeAlert и MyShake — разрабатывают и внедряют системы раннего предупреждения землетрясений, используя сочетание сенсорных сетей, машинного обучения и других передовых технологий.

В России работают несколько организаций, которые занимаются исследованиями и мониторингом землетрясений.

  • Институт физики Земли — ведущий российский научно-исследовательский институт, специализирующийся на геофизике, в том числе на изучении землетрясений.
  • Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) — государственное учреждение, ответственное за мониторинг и прогнозирование опасных природных явлений, включая землетрясения.
  • Институт динамики геосфер — научно-исследовательский институт РАН, который специализируется на геодинамике, сейсмологии и изучении землетрясений.
  • Дальневосточное отделение РАН — филиал Российской академии наук, который проводит исследования в различных областях, включая сейсмологию и изучение землетрясений в Дальневосточном регионе.

ПрогнозированиеПравить

Краткая инструкция для наблюдения и собирания фактов о колебаниях земной коры

  • детерминистические предсказания отдельных землетрясений с точностью, достаточной для того, чтобы можно было планировать программы эвакуации, нереальны;
  • по крайней мере некоторые формы вероятностного прогноза текущей сейсмической опасности, основанные на физике процесса и материалах наблюдений, могут быть оправданы.

Даже если бы точность измерений и несуществующая пока физико-математическая модель сейсмического процесса дали возможность с достаточной точностью определить место и время начала разрушения участка земной коры, магнитуда будущего землетрясения остаётся неизвестной. Дело в том, что все модели сейсмичности, воспроизводящие график повторяемости землетрясений, содержат тот или иной стохастический генератор, создающий в этих моделях динамический хаос, описываемый лишь в вероятностных терминах. Более явно источник стохастичности качественно можно описать следующим образом. Пусть распространяющийся во время землетрясения фронт разрушения подходит к участку повышенной прочности. От того, будет разрушен этот участок или нет, зависит магнитуда землетрясения. Например, если фронт разрушения пройдёт дальше, землетрясение станет катастрофическим, а если нет, останется небольшим. Исход зависит от прочности участка: если она ниже некоторого порога, разрушение пойдет по первому сценарию, а если выше, по второму. Возникает «эффект бабочки»: ничтожно малое различие в прочности или напряжениях приводит к макроскопическим последствиям, которые нельзя предсказать детерминистически, поскольку это различие меньше любой точности измерений. А предсказание места и времени землетрясения с неизвестной и, возможно, вполне безопасной магнитудой не имеет практического смысла, в отличие от расчёта вероятности того, что сильное землетрясение произойдёт.

Как предсказать землетрясение

В настоящее время ученые не в состоянии точно предсказывать землетрясения. Существуют методы обнаружения изменения сейсмической активности и деформаций в земной коре, которые могут указывать на повышенную вероятность землетрясения, но на основе этих методов нельзя сказать его точное время или место.

Основное внимание в настоящее время во всем мире уделяется совершенствованию систем раннего предупреждения, а также подготовке и повышению осведомленности населения. Системы раннего предупреждения используют сети сейсмического мониторинга для обнаружения начала землетрясения и быстрой выдачи предупреждений тем, кто находится в пострадавшем районе, позволяя им принять защитные меры до начала сильного сотрясения.

В качестве инструмента для прогнозирования землетрясений и систем раннего предупреждения сейчас активно рассматривают (но пока широко не используют) нейросети. Алгоритмы искусственного интеллекта, такие как машинное и глубокое обучение, можно обучить на исторических сейсмических данных для выявления закономерностей и составления прогнозов о будущих землетрясениях. Эти алгоритмы также можно использовать для анализа сейсмических данных в реальном времени. Однако точность прогнозирования землетрясений на основе ИИ все еще ограничена. Множество факторов усложняют прогнозирование землетрясений, включая ограниченный набор данных, доступных для обучения, нелинейный и хаотический характер землетрясений и влияние человеческой деятельности на измерения.

Среднефокусные землетрясения

Распространение и историяПравить

Землетрясения захватывают большие территории и характеризуются: разрушением зданий и сооружений, под обломки которых попадают люди; возникновением массовых пожаров и производственных аварий; затоплением населенных пунктов и целых районов; отравлением газами при вулканических извержениях; поражением людей и разрушением зданий обломками вулканических горных пород; поражением людей и возникновением ячеек пожаров в населенных пунктах от вулканической лавы; провалом населенных пунктов при обвальных землетрясениях; разрушением и смывом населенных пунктов волнами цунами; отрицательным психологическим воздействием.

  • 1290 г. в районе залива Бохайвань (Китай) погибло около 100 тыс. чел.,
  • 1556 г. в провинции Шэньси — 830 тыс. чел.,
  • 1737 г. в Калькутте (Индия) — 300 тыс. чел.,
  • 1908 г. в Мессине (Италия) — 120 тыс. чел.,
  • 1923 г. в Токио — 143 тыс. чел.,
  • 1976 г. в Таншане (Китай) — около 240 тыс. чел.,
  • 1999 г. в Турции — около 40 тыс. чел.,
  • 2001 г. в Индии — около 30 тыс. чел.
  • 1988 г. в Армении — около 25 тыс. чел.

Механизм возникновения землетрясения и его параметры

Землетрясения – это одни из самых страшных природных катастроф, вызывающих не только опустошительные разрушения, но и уносящие десятки и сотни тысяч человеческих жизней.

Известно большое число катастрофических землетрясений, во время которых число жертв составило многие тысячи (рис. 18.0). В 1556 г. в Китае, в провинции Шэньси, страшное землетрясение привело к гибели 830 тыс. человек, а многие сотни тысяч получили ранения. Мессинское землетрясение в 1923 г. – 150 тысяч; Таншаньское в Китае в 1976 г. – 650 тысяч. В Армении 7 декабря 1988 г. в результате Спитакского землетрясения погибло более 25 тыс. человек и 250 тыс. было ранено.

Землетрясения разной силы и в разных точках земного шара происходят постоянно, приводя к огромному материальному ущербу и жертвам среди населения. Поэтому ученые разных стран не оставляют попыток определить природу землетрясения, выявить его причины и, самое главное, научиться его предсказывать, что, к сожалению, за исключением единичных случаев пока не удается.

Механизм возникновения землетрясения и его параметры.

Землетрясение тектонического типа, т.е. связанное с внутренними эндогенными силами Земли, представляет собой процесс растрескивания, идущий с некоторой конечной скоростью, а не мгновенно. Он предполагает образование и обновление множества разномасштабных разрывов, со вспарываением каждого из них не только с высвобождением, но и перераспределением энергии в некотором объеме. Когда мы говорим о том, что сила внешнего воздействия на горные породы превысила их прочность, то следует иметь в виду, что в геомеханике четко различают прочность горных пород как материала, которая относительно высока и прочность породного массива, включающего помимо материала горных пород еще и структурные ослабленные зоны. Благодаря последним, прочность породного массива существенно ниже, чем прочность собственно пород.

Скорость распространения разрывов составляет несколько км/сек и этот процесс разрушения охватывает некоторый объем пород, носящий название очага землетрясения. Гипоцентром называется центр очага, условно точечный источник короткопериодных колебаний (рис. 18.1.1).

Среднефокусные землетрясения

Рис. 18.1.1. Очаг землетрясения и распространения сотрясений в объеме породы: 1 –

область очага или гипоцентр, 2 – проекция гипоцентра на поверхность Земли – эпицентр.

Линии изосейст на поверхности – линии равных сотрясений в баллах

В большинстве случаев, хотя и не всегда, разрывы имеют сдвиговую природу и очаг землетрясения охватывает определенный объем вокруг него. Проекция гипоцентра на земную поверхность называется эпицентром землетрясения. Интенсивность землетрясения эпицентра изображается линиями равной интенсивности землетрясений — изосейстами. Область максимальных баллов вокруг эпицентра носит название плейстосейстовой области.

Основному подземному сейсмическому удару – землетрясению, обычно предшествуют землетрясения или форшоки, свидетельствующие о критическом нарастании напряжений в горных породах. После главного сейсмического удара обычно наблюдаются еще сейсмические толчки, но более слабые, чем главный удар. Они называются афтершоками и свидетельствуют о процессе разрядки напряжений при образовании новых разрывов в толще пород.

По глубине гипоцентров (фокусов) землетрясения подразделяются на 3 группы:

1) мелкофокусные 0-60 км; 2) среднефокусные – 60-150 км; 3) глубокофокусные 150-700 км. Но чаще всего гипоцентры землетрясений сосредоточены в верхней части земной коры на глубинах в 10-30 км, где кора характеризуется наибольшей жесткостью и хрупкостью. Быстрые, хотя и неравномерные смещения масс горных пород вдоль плоскости разрыва вызывают деформационные волны – упругие колебания в толще пород, которые, распространяясь во все стороны и, достигая поверхности Земли, производят на ней основную разрушающую работу. Уже говорилось о главных типах объемных и поверхностных сейсмических волн. К первым относятся продольные – Р (более скоростные) и поперечные – S (менее скоростные) волны. Ко вторым – волны Лява — L и Рэлея – R. Волны Р представляют собой чередование сжатия и растяжения и способны проходить через твердые, жидкие и газообразные вещества, в то время как волны S при своем распространении сдвигают частицы вещества под прямым углом к направлению своего пути.

Скорость продольных волн:

Среднефокусные землетрясения

Где µ — модуль сдвига; с — плотность среды, в которой распространяется волна; л —

коэффициент, связанный с модулем всестороннего сжатия К соотношением

Среднефокусные землетрясения

Скорость поперечных волн:

Среднефокусные землетрясения

т.к. модуль сдвига µ в жидкости и газе равен 0, то поперечные волны не проходят через жидкости и газы.

Поверхностные волны подобны водной ряби на озере. Волны Лява заставляют­колебаться частицы пород в горизонтальной плоскости параллельно земной поверхности, под прямым углом к направлению своего распространения. А волны Рэлея, скорость которых меньше, чем волн Лява, возникают на границе раздела двух сред и, воздействуя на частицы, заставляют их двигаться по вертикали и горизонтали в вертикальной плоскости, ориентированной по направлению распространения волн.

Поверхностные волны распространяются медленнее, чем объемные, и довольно быстро затухают как на поверхности, так и с глубиной. Волны Р, достигая поверхности Земли, могут передаваться в атмосферу в виде звуковых волн на частотах более 15 Гц. Этим объясняются «страшный гул», иногда слышимый людьми во время землетрясений.

Сейсмические волны, вызываемые землетрясениями, можно зарегистрировать, используя т.н. сейсмографы – приборы, в основе которых лежат маятники, сохраняющие свое положение при колебаниях подставки, на которой они расположены. Отмечая время первого вступления волн, т.е. появления волны на сейсмограмме и зная скорости их распространения, определяют расстояние до эпицентра землетрясения (рис.­18.1.4). сейсмографами.

Интенсивность или сила землетрясений характеризуется как в баллах (мера разрушений), так и понятием магнитуда (высвобожденная энергия). В России используется 12-балльная шкала интенсивности землетрясений MSK – 64, составленная­С.В.Медведевым, В. Шпонхойером и В. Карником (см. аббревиатуру).

Согласно этой шкале, принята следующая градация интенсивности или силы землетрясений:

1 –3 балла – слабые

4 – 5 баллов – ощутимые

6 – 7 баллов — сильные (разрушаются ветхие постройки)

8 – разрушительное (частично разрушаются прочные здания, заводские трубы)

9 – опустошительное (разрушаются большинство зданий)

10 – уничтожающее (разрушаются почти все здания, мосты, возникают обвалы и

11 – катастрофические (разрушаются все постройки, происходит изменение

12 – губительные катастрофы (полное разрушение, изменение рельефа местности

на обширной площади).

Среднефокусные землетрясения

Рис. 18.1.4. Время пробега сейсмических волн от эпицентра землетрясения, используемое

для определения расстояния от эпицентра до точки регистрации землетрясения

Степень сотрясения на поверхности Земли, как и площадь, охваченная им, зависит от многих причин, в том числе от характера очага, глубины его залегания, типов горных пород, рыхлых отложений или скальных выступов, обводненности и др.

В целях количественной оценки меры полной энергии сейсмических волн выделившихся при землетрясении широко используется шкала магнитуд (М) по Ч.Ф.Рихтеру, профессору Калифорнийского технологического института.

Среднефокусные землетрясения

Где А и Т – амплитуда и период колебаний в волне, . — расстояние от станции наблюдения до эпицентра землетрясения, В и е — константы, зависящие от условий расположения станции наблюдения.

Это магнитуда, вычисленная по поверхностным волнам, хотя используются магнитуды по продольным и поперечным волнам.

Магнитуда 0 означает землетрясение с максимальной амплитудой смещения в 1­мкм на эпицентральном расстоянии в 100 км. При магнитуде 5 отмечаются небольшие разрушения зданий, а магнитуда 7 знаменует собой опустошительное землетрясение. Самые сильные из зарегистрированных землетрясений имели магнитуду 8,9-9,0. Следует подчеркнуть, что глубокофокусные землетрясения обычно не порождают поверхностных сейсмических волн, поэтому существуют и другие магнитудные шкалы, например, телесейсмическая для удаленных (более 2000 км от эпицентра) землетрясений или унифицированная магнитуда Б.Гутенберга, определяемая по амплитуде продольных объемных волн. Существует много модификаций шкал, позволяющих оценивать энергию всех землетрясений, происходящих на земном шаре и, в том числе, всех ядерных подземных и промышленных взрывов. В частности, оценка сейсмического момента –

Среднефокусные землетрясения

Среднефокусные землетрясения

Наибольший из известных, сейсмический момент был установлен для землетрясения в Чили в 1960 г. – МW= 9,6; Мо = 2,5 ·1030 дин·см.

Существует определенная зависимость между магнитудой (М) и силой землетрясения, выраженной в баллах (J0).

Среднефокусные землетрясения

Связь между магнитудой (М), интенсивностью землетрясений в баллах (J0) и глубиной очага. (Н) выражается формулой:

Среднефокусные землетрясения

где а,b и с – коэффициенты, определяемые эмпирически для каждого конкретного района, где произошло землетрясений.

Энергия, выделяемая при землетрясениях достигает огромных величин и выражается формулой:

Среднефокусные землетрясения

Среднефокусные землетрясения

— плотность верхних слоев Земли,, V – скорость сейсмических волн, А – амплитуда смещения, Т – период колебаний. Рассчитывать энергию позволяют данные, считываемые с сейсмограмм.

Б.Гутенберг, работавший, как и Ч.Ф.Рихтер, в Калифорнийском технологическом институте, предложил уравнение связи между энергией землетрясения и его магнитудой по шкале Рихтера

Среднефокусные землетрясения

Эта формула демонстрирует колоссальное возрастание энергии при увеличении магнитуды землетрясения. Так, увеличение магнитуды землетрясения на одну единицу вызывает возрастание энергии в 32 раза, в то время как амплитуда колебания земной поверхности увеличивается лишь в 10 раз.

Среднефокусные землетрясения

Рис. 18.1.3. Соотношение магнитуды землетрясений и выделившейся энергии

Среднефокусные землетрясения

Количество энергии, выделившееся в единице объема горной породы, например, в 1 м3 на 1 сек называется удельной сейсмической мощностью.

Интенсивность землетрясения в эпицентре землетрясения и в плейстосейстовой области тем выше, чем ближе к поверхности находится очаг. Однако с расстоянием от эпицентра в этом случае колебания быстро затухают. При очень сильных землетрясениях с М=8, сейсмоколебания охватывают огромную площадь радиусом около­1000 км. Площадь, охваченная разрушением, растет в зависимости от магнитуды. Так при­М=5 и глубине очага в 40 км, площадь разрушений составит около 100 км2, а при М=8 –­около 20000 км2.

Очаги землетрясений. Уже говорилось о том, что подавляющая часть землетрясений возникает в верхней относительно более хрупкой части земной коры на глубинах 7-30 км. Механизм этих землетрясений показывает, что все они образовались в результате смещения по разломам с почти обязательной сдвиговой компонентой. Размеры очагов землетрясений в целом увеличиваются с возрастанием магнитуды.­Если очаг располагается неглубоко, то сейсмогенный разрыв может выйти на поверхность, как это случилось, например, во время Спитакского землетрясения. Очаг представляет собой не плоскость, а некоторый объемный блок литосферы, в пределах которого осуществляются подвижки по целому ряду отдельных разломов, сливающихся в один крупный сейсмогенный разрыв.

Палеосейсмодислокации. Следы землетрясений, происходивших в недавнем геологическом прошлом — в голоценовое время, т.е. за последние 10 000 лет, можно обнаружить в рельефе. Сильные землетрясение всегда оставляют следы, «раны» на поверхности Земли. Такие сейсмогенные нарушения обычно накладываются на рельеф, совершенно не согласуясь с его элементами. В результате землетрясений возникают крупные оползни, осовы, оплывины, обвалы, прекрасно дешифрируемые на аэрофотоснимках, а крупные разломы и трещины – на космических снимках. Например, на горных склонах центральной части Большого Кавказа прекрасно видны неглубокие рвы, уступы, секущие эти склоны и располагающиеся, невзирая на особенности геологического строения местности. Их относительная свежесть свидетельствует, по-видимому, о недавних сильных землетрясениях. Поэтому изучение палеосейсмодислокаций имеет большой практический смысл, т.к. их наличие однозначно свидетельствует об активной сейсмичности района в недалеком геологическом прошлом и, следовательно, район может вновь подвергнуться сильному землетрясению.

Классификация землетрясений по магнитуде и балльности

Очаг вулкана — резервуар магмы, находящийся в земной коре или верхней мантии Земли и питающий вулкан.

Гипоцентр — точка начала разрушения, сдвига или вспарыва­ния трещин в толще земной коры или верхней мантии.

Гипоцентральное расстояние — расстояние от гипоцентра до данной точки на земной поверхности.

Глубина очага — кратчайшее расстояние от гипоцентра до зем­ной поверхности.

Эпицентр — проекция гипоцентра на земную поверхность.

Эпицентральная область — проекция очага землетрясения на земную поверхность.

Эпицентральное расстояние — расстояние от эпицентра до данной точки на земной поверхности.

Рой — случайно возникающие в пространстве и времени груп­пы землетрясений обычно умеренной величины, без явно выде­ляемого основного толчка, по силе и высвобождаемой энергии.

Форшоки — относительно слабые сейсмические колебания (толчки), предшествующие сильнейшему из серии колебаний (толчков), главному удару.

Главный удар (основная фаза землетрясения) — снятие основ­ных добавочных напряжений при мгновенном разрушении или сдвиге по магистральному разрыву, при этом накопившаяся по­тенциальная энергия деформации переходит в кинетическую энергию движения.

Афтершоки — более слабые по сравнению с главным ударом сейсмические колебания (толчки), возникающие после главного удара, в результате снятия возникших добавочных напряжений на участках, ограничивающих магистральный разрыв.

Изосейста — линия, соединяющая точки с одинаковой интенсивностью землетрясения.

Сейсмическое районирование — разделение территории, подверженной землетрясениям, на районы с одинаковым сейсмическим воздействием на здания и сооружения.

Сейсмическое микрорайонирование — количественная оценка изменения (увеличения или уменьшения) интенсивности землетрясения по сравнению с ее исходной или уточненной величиной на основе комплексного изучения сейсмических свойств грунтов, инженерно-геологических и гидрогеологических особенностей местности.

Сейсмические волны — упругие колебания, распространяющиеся в Земле от очагов землетрясений.

Сейсмометр, велосиметр, акселерометр — приборы для записи без развертки во времени смещений, скоростей и ускорений поверхности земной коры во время землетрясений.

Сейсмограф, велосиграф, акселерограф — приборы для запи­си с разверткой во времени смещений, скоростей и ускорений по­верхности земной коры во время землетрясений.

Сейсмическая станция — научное учреждение, ведущее регист­рацию колебаний земной поверхности, вызванных землетрясе­ниями, а также первичную обработку полученных записей.

Взрывы.Взрывы могут быть как запланированными, так и случайными. К запланированным относятся взрывы ядерных и обычных зарядов в военных и мирных целях, а также с целью под­рыва обороноспособности и безопасности государства.

Причиной запланированных взрывов является ведение бое­вых действий и выполнение народнохозяйственных задач, а так­же диверсии и террористические акты.

В зависимости от типа ВВ различают взрывы конденсирован­ных, жидких, газообразных, ядерных и термоядерных взрывчатых веществ.

Взрывы, причиной которых является электромагнитное воз­действие, подразделяются на взрывы искрового разряда, лазер­ной искры и др.

Взрывы, причина которых связана с механическим воздейс­твием, возникают при ударе метеоритов, астероидов и комет о поверхность земной коры, извержении вулканов и других явле­ниях.

В зависимости от среды, в которой происходит взрыв, разли­чают подземные, наземные, воздушные, высотные, подводные и надводные взрывы.

Бури и ураганы.Причиной возникновения бурь и ураганов яв­ляются прохождения глубоких циклонов и обширных антицикло­нов на периферии.

Бури подразделяются на вихревые (пылевые) и потоковые.

В зависимости от окраски частиц, вовлеченных в движение, различают черные, красные, желто-красные и белые бури.

По составу частиц, вовлеченных в движение, бури бывают пы­левые, песчаные, снежные и др.

В зависимости от скорости ветра бури классифицируются на три типа: буря (20 м/с и более), сильная буря (26 м/с и более) и жес­токая буря (30,5 м/с и более).

Смерчи.Смерчи обычно возникают при прохождении глубо­ких циклонов и обширных антициклонов на периферии. Смерчи классифицируются на невидимые, водяные и огнен­ные.

Невидимые смерчи характеризуются тем, что они сопровожда­ются вовлечением в движение только частиц воздуха и их ворон­ка не касается грунтовой поверхности.

Водяные смерчи отличаются от невидимых тем, что при их движении внутрь вовлекается большое количество воды.

mydocx.ru — 2015-2023 year. (0.008 sec.)

Оцените статью
Землетрясения