Стадии землетрясения

Стадии землетрясения Землетрясения

Причины землетрясений.

Хотя уже с давних времен ведутся многочисленные исследования, нельзя сказать, что причины возникновения землетрясений полностью изучены. По характеру процессов в их очагах выделяют несколько типов землетрясений, основными из которых являются тектонические, вулканические и техногенные.

Большая часть землетрясений связана с процессами горообразования или разломами литосферных плит. Такие землетрясения называются тектоническими. Верхнюю часть земной коры составляют около десятка огромных блоков – тектонических плит. Эти плиты перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературной мантии. Одни плиты двигаются навстречу друг другу (как, например, в районе Красного моря).

ЗЕМЛЕТРЯСЕНИЯ, колебания Земли, вызванные внезапными изменениями в состоянии недр планеты. Эти колебания представляют собой упругие волны, распространяющиеся с высокой скоростью в толще горных пород. Наиболее сильные землетрясения иногда ощущаются на расстояниях более 1500 км от очага и могут быть зарегистрированы сейсмографами (специальными высокочувствительными приборами) даже в противоположном полушарии. Район, где зарождаются колебания, называется очагом землетрясения, а его проекция на поверхность Земли – эпицентром землетрясения. Очаги большей части землетрясений лежат в земной коре на глубинах не более 16 км, однако в некоторых районах глубины очагов достигают 700 км. Ежедневно происходят тысячи землетрясений, но лишь немногие из них ощущаются человеком.

Упоминания о землетрясениях встречаются в Библии, в трактатах античных ученых – Геродота, Плиния и Ливия, а также в древних китайских и японских письменных источниках. До 19 в. большинство сообщений о землетрясениях содержало описания, обильно приправленные суевериями, и теории, основанные на скудных и недостоверных наблюдениях. Серию систематических описаний (каталогов) землетрясений в 1840 начал А.Перри (Франция). В 1850-х годах Р.Малле (Ирландия) составил большой каталог землетрясений, а его подробный отчет о землетрясении в Неаполе в 1857 стал одним из первых строго научных описаний сильных землетрясений.

Землетрясения:  Зощенковское землетрясение и краеведение. Резюме. Туризм

Сейсмические волны.

При землетрясении в очаге частицы горных пород перемещаются и передают колебания в виде акустической волны. Акустические волны, которые возникают при землетрясении, называются сейсмическими. Сейсмические волны возбуждаются землетрясением или крупным взрывом. Различают несколько типов сейсмических волн: волны сжатия, волны сдвига и поверхностные волны.

Волны сжатия, Р-волны, или продольные волны, заставляют частицы пород колебаться подобно спиральной пружине. Р-волны вызывают колебания частиц вдоль направления распространения волны путем чередования участков сжатия и разрежения в породах. P-волны могут проникать в любое место земного шара.

Волны сдвига, S-волны, или поперечные сейсмические волны заставляют частицы пород колебаться перпендикулярно направлению распространения волны подобно вибрирующей гитарной струне. S-волны распространяются только в материале, обладающем упругостью, и поэтому не в состоянии проходить через жидкое ядро Земли. Благодаря этому явлению в 1906 английский сейсмолог Олдгем, наблюдая за распространением S-волн, сделал вывод о существовании земного ядра. Скорость волн зависит от типа породы, в которой они распространяются, скорость Р-волн примерно в 2 раза больше скорости S-волн. Именно продольные волны первыми регистрируются сейсмографами, поэтому сейсмологи называют их первичными (Primary) P-волнами, а поперечные – вторичными (Secondary) – S-волнами. Третий тип сейсмических волн – поверхностные или длинные (Long) – L-волны. Они распространяются по земной поверхности подобно морским волнам. Поверхностные волны движутся примерно в 2 раза медленнее, чем S-волны, но отличаются наибольшей амплитудой. Поверхностные волны и вызывают самые сильные разрушения, сотрясая земную поверхность.

Отражение и преломление.

Встречая на своем пути слои пород с отличающимися свойствами, сейсмические волны отражаются или преломляются подобно тому, как луч света отражается от зеркальной поверхности или преломляется, переходя из воздуха в воду. Любые изменения упругих характеристик или плотности материала на пути распространения сейсмических волн заставляют их преломляться, а при резких изменениях свойств среды часть энергии волн отражается (см. рис.).

Землетрясения:  На севере Свердловской области произошло землетрясение. Что нам следует опасаться?

Землетрясения

Ежегодно на земном шаре регистрируется
более 100 000 землетрясений. Большинство
из них мы вообще не ощущаем, некоторые
отзываются лишь дребезжанием посуды в
шкафах и раскачиванием люстр, зато
другие, к счастью гораздо более редкие,
в мгновение ока превращают города в
груды дымящихся обломков. Землетрясение-это
бедствие, катастрофа, поэтому огромные
усилия затрачиваются на предсказания
возможных сейсмических толчков, на
выделение сейсмоопасных районов, на
мероприятия, призванные сделать
промышленные и гражданские здания
сейсмостойкими, что ведет к большим
дополнительным затратам в строительстве.

ОЧАГ, СЕЙСМИЧЕСКИЕ ВОЛНЫ, МАГНИТУДА И
ЭНЕРГИЯ ЗЕМЛЕТРЯСЕНИЙ

Любое землетрясение-это тектонические
деформации земной коры или верхней
мантии, происходящие вследствие того,
что накопившиеся напряжения в какой-то
момент превысили прочность горных пород
в данном месте. Разрядка этих напряжений
и вызывает сейсмические колебания в
виде волн, которые, достигнув земной
поверхности, производят разрушения.
Описывая землетрясения, пользуются
некоторыми терминами, которые необходимо
знать.

Гипоцентр
или очаг – определенный
объем горных пород, внутри которого
осуществляются неупругие деформации
и происходят разрушения пород. Понятие
очага, или гипоцентра не является
строгим, но важно подчеркнуть, что это
не точка, а некоторое пространство,
объем, формы и размеры которого могут
быть самыми различными.

Эпицентр-проекция гипоцентра на
земную поверхность, поэтому следует
иметь в виду, что нередко карты
распределения эпицентров создают не
совсем правильную картину связи
землетрясений с поверхностной
геологической структурой, особенно в
случае наклонных разрывов типа надвигов
с гипоцентром на большой глубине. Это
обстоятельство подчеркивается для
соблюдения осторожности при интерпретации
землетрясений от особенностей
геологического строения региона.

Интенсивность – это
внешний эффект землетрясения на
поверхности Земли, который выражается
в определенном смещении почвы, частиц
горных пород, степени разрушения зданий,
появлении трещин на поверхности и т.д.
В настоящее время в России используется
шкала интенсивности землетрясений
«MSK-64», названная так по заглавным
буквам фамилий авторов.

Шкала удобна, ею легко
пользоваться, а интенсивность землетрясений
измеряется в баллах от 1 до 12. По этой
шкале Кеминское землетрясение в 1911 г.
на Тянь-Шане оценивалось в 11-12 баллов,
Ашхабадское 1948 г. – в 10, Спитакское 1988
г. – в 7-10.

Изосейсты-линии,
соединяющие точки (пункты на местности),
в которых землетрясение проявилось с
одинаковой интенсивностью. Плейстосейстовая
область-место на
поверхности Земли, располагающееся
непосредственно над гипоцентром, или
очагом землетрясения, т.е. это как бы
проекция очага на поверхность. Естественно,
что интенсивность землетрясения
уменьшается в сторону от плейстосейстовой
области, однако это уменьшение зависит
от многих факторов: формы и глубины
очага, геологической структуры, состава
и степени метаморфизма горных пород,
уровня залегания грунтовых вод и т.д.
Поэтому изосейсты на поверхности могут
иметь самые причудливые очертания, а
отнюдь не правильные круги.

Магнитуда (М) – логарифм
отношения максимального смещения частиц
грунта (в микрометрах) А1
при данном конкретном землетрясении к
некоторому эталонному очень слабому
смещению грунта A2:

Стадии землетрясения

Магнитуда-это безразмерная величина,
и она была предложена в 1935 г. американским
геофизиком Ч. Рихтером. Шкала, созданная
им, широко используется в сейсмологии
и изменяется от 0 до 8,8 при самых сильных
катастрофических землетрясениях.
Магнитуда отличается от интенсивности.
Так, например, Ташкентское землетрясение
1966 г. было силой в 8 баллов, М-5,3; Ашхабадское
1948 г.-10 баллов, М-7,3.

Энергия (Е)землетрясений – это та
величина потенциальной энергии, которая
освобождается в виде кинетической после
разрядки напряжения в очаге и, достигая
поверхности Земли, вызывает ее колебания.
Распространяется энергия в виде упругих
сейсмических волн. Энергия землетрясения
вычисляется в джоулях.

Часть выделившейся энергии, помимо
формирования сейсмических волн,
расходуется на преодоление сил трения
в очаге, на пластические деформации,
наконец, на выделение тепла, которое
может быть весьма значительным.

Глубиной очага землетрясений(h)
называется расстояние от поверхности
Земли по нормали до гипоцентра, или
очага.

Глубины очагов землетрясений
могут быть очень разными – от первых
километров до 600-700 км в сейсмофокальных
зонах Беньофа. Однако подавляющее
количество землетрясений (около 90 %)
приурочено к интервалу до 100-200 км.

Механизм возникновения
землетрясений, т.е. механизм возникновения
очага, весьма сложен и трактуется
неоднозначно. В настоящее время считается
установленным, что основные параметры
землетрясения, его магнитуда и энергия
зависят от размеров очага, а не от
накопившихся напряжений и деформаций.
Была выдвинута идея «вспарывания»
тектонического (сейсмического) разрыва.
В каком-то месте этого разрыва происходит
накапливание напряжений. Когда они
превышают предел прочности горных пород
в данном месте, разрыв «взрезается»,
«вспарывается» и распространяется
на определенную длину с большой скоростью,
достигающей 3 — 4 км/с. Именно с такими
скоростями происходит разрушение пород
в очаге землетрясений.

ГЕОГРАФИЧЕСКОЕ РАСПРОСТРАНЕНИЕ И
ТЕКТОНИЧЕСКИЙ КОНТРОЛЬ ЗЕМЛЕТРЯСЕНИЙ

Распространение современных землетрясений
на земном шаре в настоящее время
установлено с большой точностью. Прежде
всего, это Тихоокеанское кольцо, в
котором эпицентры землетрясений
совпадают с островными дугами: Алеутской,
Курильской, Восточной Камчатки, Японской
и т. д. На востоке Тихого океана это
побережье Северной Америки, Мексика,
Центральная Америка, Южная Америка, а
также полоса вдоль Восточно-Тихоокеанского
поднятия. В Атлантическом и Индийском
океанах сейсмичность сосредоточена
вдоль срединно-океанских хребтов.
Восточно-Африканская рифтовая зона
также отличается высокой сейсмичностью.
Протяженная полоса современных
Землетрясений приурочена к
Альпийско-Средиземноморскому поясу:
это побережье Алжира, Италия, Динариды,
Балканы и Эгейское морс, Турция, Крым,
Кавказ, Иран, Афганистан, Памир, Тянь-Шань
и т. д. В пределах СССР повышенной
сейсмичностью отмечена Байкальская
рифтовая зона.

Такое распространение землетрясений
говорит о том, что все они приурочены к
областям высокой современной тектонической
активности и связаны с конвергентными
или дивергентными границами литосферных
плит, т.е. там, где происходят либо сжатие,
поглощение океанской коры в зонах
субдукции, коллизии плит и т. д., либо
растяжение, наращивание океанской коры,
или раздвиг континентальной коры. В
этих регионах непрерывно накапливаются
тектонические напряжения, которые
периодически разряжаются в виде
землетрясений. В то же время существуют
огромные асейсмичные пространства,
совпадающие с древними платформами,
внутренними частями океанских плит,
эпипалеозойскими плитами.

Активные сейсмические и вулканические
зоны, по данным Е.С. Штенгелова, довольно
точно приурочены к областям превышения
геоида над эллипсоидом вращения, причем
с выпуклостями геоида связано примерно
83% землетрясений с М-6 и 86% действующих
вулканов Мира. Форма геоида определяется
процессами, происходящими во внутренних
частях Земли — в мантии и ядре. На это
явление накладываются ротационные силы
Земли, неравномерность ее вращения и
т. д. Кстати, уже с XVIII в., со времен работ
француза А. Перре известно, что число
преимущественно мелкофокусных
землетрясений возрастает примерно на
20-25% в момент перехода Луны от апогея к
перигею. Это вызвано тем, что гравитационное
воздействие Луны на Землю в перигее
значительно выше, так как Луна в этот
момент ближе к Земле, чем в апогее. Эти
гравитационные силы действуют как
«спусковой крючок» и напряжения
разряжаются сейсмическими подвижками.

Сейсмогенные дислокацииобразуются
в плейстосейстовой и прилегающих
областях. Районы, затронутые
сейсмодислокациями, занимают площадь
в десятки, и даже сотни тысяч км.
Сейсмотектонические нарушения могут
выражаться вертикальными смещениями
с амплитудой до первых десятков метров,
формированием поднятий, впадин и
провалов, горизонтальными смещениями,
образованием ступенчатых сбросов,
взбросов и т. д.

Землетрясения вызывают
образование крупных оползней, обвалов,
оползней-обвалов и других форм
сейсмодислокаций. Объем таких оползней
может достигать сотен тысяч м, длина —
нескольких километров, а площадь —
десятков км. Подобные сейсмодислокации
известны на Тянь-Шане, в Прибайкалье и
Забайкалье, на Кавказе, в Становом хребте
и во многих других местах. Изучение
древних сейсмодислокаций способствует
проведению сейсмического
районирования, так
как по их форме и характеру появляется
возможность оценить балльность данного
региона, хотя, скажем, в наши дни
землетрясения там не происходят.

В настоящее время важное
значение приобретает палеосейсмология
— метод, позволяющий
устанавливать следы землетрясений в
геологическом прошлом. Многие современные
плейстосейстовые области оказываются
унаследованными от более древних.
Большое значение имеет и археосейсмология,
когда рассматриваются повреждения
древних построек, имеющие сейсмогенный
характер, и по их
типу реконструируется
балльность.

Землетрясения происходят
не только на суше, но и в морях и океанах.
В пределах океанского дна над очагом
могут возникать поднятия или впадины,
что сразу же изменяет объем воды и над
плейстосейстовой областью образуется
волна, которая в открытом океане
практически незаметна из-за своей очень
большой длины в первые сотни километров.
Распространяясь со скоростью до 800 км/ч,
при подходе к побережью на мелководье
волна становится круче, достигая 15- 20
м, и, обрушиваясь на
берег, уничтожает все на своем пути.
Такие волны, вызванные землетрясениями,
называются цунами.

Сейсмическое районирование и прогноз
землетрясенийпредставляют чрезвычайно
важную задачу, так как от степени их
достоверности зависят огромные
капиталовложения в сейсмостойкое
строительство. Повышение на 1 балл
возможной сейсмической опасности сразу
ведет к удорожанию всех строительных
объектов. Сейсморайонирование — это
очень трудоемкая и ответственная работа,
которая должна учитывать множество
факторов: связь землетрясений с глубинным
строением земной коры; геофизическими
полями; неотектоникой; геоморфологическими
и геологическими особенностями района;
типами горных пород, их составом и
прочностью; разрывными нарушениями,
трещиноватостью и еще многими другими
параметрами, включая свойства грунта,
уровень подземных вод, палеосейсмодислокации
и т.д. Все это должно дать ответ на
один-единственный вопрос, — какое
максимальное расчетное землетрясение
можно ожидать в данном конкретном районе
(МРЗ).

В зависимости от балльности возможных
землетрясений в строительстве существуют
специальные нормы, строгое выполнение
которых обязательно. Ограничивается
этажность зданий, укрепляется их
фундамент, они окружаются антисейсмическими
поясами, не разрешается возведение
дополнительных нависающих деталей,
облегчается кровля, используется
железобетон и т.д. Опыт показывает, что
объекты, построенные с соблюдением всех
норм для районов с повышенной сейсмичностью,
при землетрясениях либо остаются целыми,
либо получают незначительные повреждения.

Прогноз землетрясений — актуальная
задача сейсмологии и сейсмогеологии.
Карты сейсмического районирования
показывают, какие районы могут быть
наиболее опасными и какой проектной
силы следует ожидать здесь землетрясения.
Необходимо выделять сейсмогенные зоны
— зоны ВОЗ (возникновения опасных
землетрясений).

Однако всех интересует
наиболее трудный и важный вопрос, — когда
оно произойдет? Ответить на него, конечно,
нелегко, но работы в этом направлении
ведутся усиленно и уже есть обнадеживающие
примеры. Прогноз может быть разный:
долгосрочный,
краткосрочный и
оперативный.
Первый дается на ближайшие десятки —
сотни лет, второй — на годы, месяцы, дни
и даже часы. Предвестников землетрясений
очень много и они совершенно разные.
Когда речь идет о долгосрочном прогнозе,
то в областях сильных землетрясений,
происходящих раз в десятки лет, важным
показателем является длительное
отсутствие землетрясений. Чем это время
больше, тем вероятность сильного
землетрясения возрастает. В некоторых
случаях важную роль играет периодичность
землетрясений по данным многолетних
наблюдений. Для краткосрочных прогнозов
большое значение имеет непрерывное
наблюдение за изменением уровня земной
поверхности и наклонов, измеряемых с
помощью наклономеров. Увеличивающееся
напряженное состояние массивов горных
пород, чреватое его скорой разрядкой,
должно сказываться на упругих свойствах
пород, их электропроводности, скорости
прохождения сейсмических волн.

Перед землетрясением часто
изменяются магнитное поле, акустические
свойства среды и электрический потенциал
атмосферы, гидрогеохимические параметры
вод, животные ведут себя необычно и т.д.
Существуют попытки предсказания
землетрясений по колебанию ГГД поля.

Превышение прочности горных пород и
их разрыв вызывают формирование очага
землетрясения и сейсмические волны
разного типа, приводящие к разрушению.
Любое землетрясение характеризуется
гипоцентром, эпицентром, интенсивностью,
магнитудой, энергией. Существуют
различные модели очаговых зон.
Землетрясения приурочены к областям
высокой современной тектонической
активности и связаны с конвергентными
и дивергентными границами литосферных
плит. Сейсмическое районирование —
основной метод предсказания землетрясений.

Вулканы.

Вулкан (от лат. vulcanus – огонь, пламя), геологическое образование, возникающее над каналами и трещинами в земной коре, по которым на земную поверхность извергаются лава, пепел, горячие газы, пары воды и обломки горных пород. Различают действующие, уснувшие и потухшие вулканы, а по форме – центральные, извергающиеся из центрального выводного отверстия, и трещинные, имеющие вид зияющих трещин или ряда небольших конусов. Основные части вулкана: магматический очаг (в земной коре или верхней мантии), жерло – выводной канал, по которому магма поднимается к поверхности; конус – возвышенность на поверхности Земли из продуктов выброса вулкана, кратер – углубление на поверхности конуса вулкана. Лавовый купол имеет округлую в плане форму и крутые склоны, прорезанные глубокими бороздами. В жерле вулкана может образоваться пробка застывшей лавы, которая препятствует выделению газов, что впоследствии приводит к взрыву и разрушению купола. Крутосклонный пирокластический конус сложен чередующимися прослоями пепла и шлаков. Щитовой вулкан с большим кратером (кальдерой), и тонким покровом застывшей лавы на поверхности. Излияния лавы могут происходить из кратера на вершине или через трещины на склонах. Внутри кальдеры, а также на склонах щитового вулкана встречаются воронки обрушения. Конус стратовулкана состоит из чередующихся слоев лавы, пепла, шлаков и более крупных обломков. Современные вулканы расположены вдоль крупных разломов и тектонических подвижных областей (главным образом на островах и берегах Тихого и Атлантического океанов). Активные действующие вулканы: Ключевская Сопка и Авачинская Сопка (Камчатка, Российская Федерация), Везувий (Италия), Исалько (Сальвадор), Мауна-Лоа (Гавайские о-ва) и др.

Регистрация землетрясений.

Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства.

Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки до секунды или меньше.

Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров.

Параметры землетрясений.

Очаги землетрясений располагаются на глубинах до 700 км, но большая часть (3/4) сейсмической энергии выделяется в очагах, находящихся на глубине до 70 км. Размер очага катастрофических землетрясений может достигать 100 × 1000 км. Его положение и место начала перемещения масс (гипоцентр) определяют путем регистрации сейсмических волн, возникающих при землетрясениях (у слабых землетрясений очаг и гипоцентр совпадают). Проекция гипоцентра на земную поверхность именуется эпицентром. Вокруг него располагается область наибольших разрушений (эпицентральная, или плейстосейстовая, область)

Последствия землетрясений.

Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.

Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.

Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.

При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.

При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.

Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут «складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.

В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов.

Географическое распространение землетрясений.

Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии.

Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.

Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.

Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.

Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США.

По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.

Глубокофокусные землетрясения.

Большинство землетрясений происходит в литосфере, т.е. на глубине до 200 км. Здесь земная кора растрескивается подобно фарфору. Напряжения накапливаются в ней до тех пор, пока не образуется разрыв и подвижка горных пород. Однако иногда очаги землетрясения находятся на глубинах вплоть до 700 км. По современным представлениям о внутреннем строении Земли на таких глубинах вещество мантии под действием тепла и давления переходит из хрупкого состояния, при котором оно способно разрушаться, в тягучее, пластическое. Везде, где глубокие землетрясения случаются достаточно часто, они «обрисовывают» некоторую наклонную плоскость, начинающуюся вблизи земной поверхности и уходящую в недра Земли до глубины 700 км. Эти плоскости стали называть зонами Вадати – Беньоффа по имени японского сейсмолога Вадати и американского – Беньоффа, которые впервые открыли это явление. Эти зоны привязаны к местам, где сталкиваются плиты. Одна плита изгибается и поддвигается под другую, погружаясь в мантию. Зона глубоких землетрясений как раз и связана с такой опускающейся плитой. Хотя для объяснения глубоких землетрясений выдвинуто множество интересных идей, но в течение 60 лет, прошедших после открытия глубоких землетрясений, они все еще остаются загадкой. До сих пор неясен механизм возникновения очага землетрясения в таких размягченных породах.

Длительность землетрясений.

Продолжительность землетрясений различна, часто число подземных толчков образует рой землетрясений, включающих предшествующие (форшоки) и последующие (афтершоки) толчки. Распределение наиболее сильного толчка (главного землетрясения) внутри роя носит случайный характер. Магнитуда сильнейшего афтершока меньше на 1,2 чем у основного толчка, эти афтершоки сопровождаются своими вторичными сериями последующих толчков.

Амплитуда и период

характеризуют колебательные движения сейсмических волн. Амплитудой называется величина, на которую изменяется положение частицы грунта при прохождении волны по сравнению с предшествовавшим состоянием покоя. Период колебаний промежуток времени, за который совершается одно полное колебание частицы. Вблизи очага землетрясения наблюдаются колебания с различными периодами – от долей секунды до нескольких секунд. Однако на больших расстояниях от центра (сотни километров) короткопериодные колебания выражены слабее: для Р-волн характерны периоды от 1 до 10 с, а для S-волн – немного больше. Периоды поверхностных волн составляют от нескольких секунд до нескольких сотен секунд. Амплитуды колебаний могут быть значительными вблизи очага, однако на расстояниях 1500 км и более они очень малы менее нескольких микрон для волн Р и S и менее 1 см – для поверхностных волн.

Действующие вулканы земли.

К действующим относятся вулканы, извергавшиеся в историческое время или проявлявшие другие признаки активности (выброс газов и пара). Всего известно примерно 2500 извержений 500 таких вулканов.

Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, андезиты по своему составу сходны с континентальной земной корой, в этих районах кора наращивается за счет поступления мантийного вещества. Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.

Прогноз землетрясений.

Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.

Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.

Изучение землетрясений.

Изучением землетрясений занимается сейсмология. Сейсмические волны, возникающие при землетрясениях, используются также для изучения внутреннего строения Земли, достижения в этой области послужили основой для развития методов сейсмической разведки. Наблюдения за землетрясениями ведутся с древнейших времен. Детальные исторические описания, надежно свидетельствующие о землетрясениях с сер. 1 тыс. до н.э., даны японцами. Большое внимание сейсмичности уделяли и античные ученые – Аристотель и др. Систематические инструментальные наблюдения, начатые во 2-ой пол. 19 в., привели к выделению сейсмологии в самостоятельную науку (Б.Б.Голицын, Э.Вихерт, Б.Гутенберг, А.Мохоровичич, Ф.Омори и др.).

Лава

– раскаленная жидкая или очень вязкая, преимущественно силикатная масса, изливающаяся на поверхность Земли при извержениях вулканов, а затем затвердевающая. Лава может изливаться из основного вершинного кратера, бокового кратера на склоне вулкана или из трещин, связанных с вулканическим очагом – резервуар магмы, находящийся в земной коре или верхней мантии Земли и питающий вулкан. Лава стекает вниз по склону в виде лавового потока. При застывании лавы образуются эффузивные горные породы.

Продольные и поперечные волны.

На сейсмограммах эти волны появляются первыми. Раньше всего регистрируются продольные волны, при прохождении которых каждая частица среды подвергается сначала сжатию, а затем снова расширяется, испытывая при этом возвратно-поступательное движение в продольном направлении (т.е. в направлении распространения волны). Эти волны называются также Р-волнами, или первичными волнами. Их скорость зависит от модуля упругости и жесткости породы. Вблизи земной поверхности скорость Р-волн составляет 6 км/с, а на очень большой глубине ок. 13 км/с. Следующими регистрируются поперечные сейсмические волны, называемые также S-волнами, или вторичными волнами. При их прохождении каждая частица породы колеблется перпендикулярно направлению распространения волны. Их скорость зависит от сопротивления породы сдвигу и составляет примерно 7/12 от скорости распространения Р-волн.

Сейсмографы.

Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы – сейсмографы. В наше время это сложные электронные устройства. У современных сейсмографов были свои предшественники. Первый сейсмограф появился в 132 в Китае. Настоящие сейсмографы появились в 1890-е. В современном сейсмографе используется свойство инерции (свойство сохранять первоначальное состояние покоя или равномерного движения). Впервые инструментальные наблюдения появились в Китае, где в 132 Чан Хен изобрел сейсмоскоп, представлявший собой искусно сделанный сосуд. На внешней стороне сосуда с размещенным внутри маятником по кругу были выгравированы головы драконов, держащих в пасти шарики. При качании маятника от землетрясения один или несколько шариков выпадали в открытые рты лягушек, размещенных у основания сосудов таким образом, чтобы лягушки могли их проглотить (рис. 9_2). Современный сейсмограф представляет собой комплект приборов, регистрирующих колебания грунта при землетрясении и преобразующих их в электрический сигнал, записываемый на сейсмограммах в аналоговой и цифровой форме. Однако, по-прежнему, основным чувствительным элементом служит маятник с грузом.

Вулканические землетрясения

происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.

Тектонические землетрясения

возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.

Техногенные землетрясения

могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.

Землетрясение

– подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. См. также ЗЕМЛЕТРЯСЕНИЯ.

Пути сейсмических волн.

Продольные и поперечные волны распространяются в толще Земли, при этом непрерывно увеличивается объем среды, вовлекаемой в колебательный процесс. Поверхность, соответствующая максимальному продвижению волн определенного типа в данный момент, называется фронтом этих волн. Поскольку модуль упругости среды возрастает с глубиной быстрее, чем ее плотность (до глубины 2900 км), скорость распространения волн на глубине выше, чем вблизи поверхности, и фронт волны оказывается более продвинутым вглубь, чем в латеральном (боковом) направлении. Траекторией волны называется линия, соединяющая точку, находящуюся на фронте волны, с источником волны. Направления распространения волн Р и S представляют собой кривые, обращенные выпуклостью вниз (из-за того, что скорость движения волн больше на глубине). Траектории волн Р и S совпадают, хотя первые распространяются быстрее.

Сейсмические станции, находящиеся вдали от эпицентра землетрясения, регистрируют не только прямые волны Р и S, но также волны этих типов, уже отраженные один раз от поверхности Земли РР и SS (или РR1 и SR1), а иногда отраженные дважды РРР и SSS (или РR2 и SR2). Существуют также отраженные волны, которые проходят один отрезок пути как Р-волна, а второй, после отражения, как S-волна. Образующиеся обменные волны обозначаются как РS или SР. На сейсмограммах глубокофокусных землетрясений наблюдаются также и другие типы отраженных волн, например, волны, которые прежде, чем достичь регистрирующей станции, отразились от поверхности Земли. Их принято обозначать маленькой буквой, за которой следует заглавная (например, рR). Эти волны очень удобно использовать для определения глубины очага землетрясения.

Интенсивность землетрясений.

Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения, служащей мерой его энергии.

Интенсивность землетрясений оценивается в сейсмических баллах. (таблица)

Сейсмические волны проходят внутри земного шара в тех местах, которые недоступны наблюдению. Все, что они встречают на пути, так или иначе их изменяет. Поэтому анализ сейсмических волн помогает выяснить внутреннее строение Земли.

При помощи сейсмографа можно оценить энергию землетрясения. Cсравнительно слабые землетрясения высвобождают энергию порядка 10 000 кг/м, т.е. достаточную, чтобы поднять груз весом 10 тонн на высоту 1 м. Этот энергетический уровень принимается за ноль, землетрясению имеющему в 100 раз больше энергии соответствует 1, еще в 100 раз более сильному соответствуют 2 единицы шкалы. Такая шкала называется шкалой Рихтера в честь известного американского сейсмолога из Калифорнии Ч. Рихтера. Число в такой шкале называется магнитудой и обозначается М. В самой шкале верхний предел не предусмотрен, по этой причине шкалу Рихтера называют открытой. В действительности сама Земля создает практический верхний предел. Сильнейшие из зарегистрированных землетрясений имели магнитуду 8,9. Таких землетрясений с начала инструментальных наблюдений зарегистрировано два, оба под океаном. Одно произошло в 1933 у берегов Японии, другое – в 1906 у берегов Эквадора. Таким образом, магнитуда землетрясения характеризует количество энергии, выделяемой очагом во все стороны. Эта величина не зависит ни от глубины очага, ни от расстояния до пункта наблюдения. Сила проявления землетрясения зависит не только от магнитуды, но и от глубины очага (чем ближе очаг к поверхности, тем больше сила его проявления), от качества грунтов (чем более рыхлый и неустойчивый грунт, тем больше сила проявления). Имеет значение, конечно, и качество наземных построек. Сила проявления землетрясения на земной поверхности определяется по шкале Меркалли в баллах. Баллы отмечаются цифрами от I до XII (цифры римские, чтобы не было путаницы с магнитудой).

Возникновение очага землетрясения.

Напряжение внутри земной коры растет до тех пор, пока не превысит прочности самих пород. Пласты горных пород разрушаются и резко смещаются, такое резкое смещение пород называется подвижкой. Вертикальные подвижки приводят к резкому опусканию или поднятию пород. Обычно смещение составляет лишь несколько сантиметров, но энергия, выделяемая при перемещении миллиардов тонн породы даже на малое расстояние, огромна. Накопленное напряжение в месте подвижки снимается.

Землетрясения часто описывают как мгновенные события, что вполне справедливо в масштабе Земли, подвижка продолжается в течение некоторого интервала времени. Точка, в которой начинается подвижка, называется очагом, фокусом или гипоцентром землетрясения. Точка на земной поверхности, расположенная непосредственно над очагом, называется эпицентром. Здесь сила подземных толчков достигает наибольшей величины. Фокус землетрясения может находиться на разной глубине, поэтому землетрясения разделяются на глубокофокусные (очаг землетрясения на глубине 300–700 км), промежуточные (глубина очага 55–300 км) и мелкофокусные (очаг от поверхности менее 55–60 км.

Магнитуда землетрясений

обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф.Рихтера, предложившего ее в 1935). Магнитуда землетрясения безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения. Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:

2 самые слабые ощущаемые толчки;

41/2 самые слабые толчки, приводящие к небольшим разрушениям;

6 умеренные разрушения;

81/2 самые сильные из известных землетрясений.

Колебания, распространяющиеся из очага землетрясения, представляют собой упругие волны, характер и скорость распространения которых зависят от упругих свойств и плотности пород. К упругим свойствам относятся модуль объемной деформации, характеризующий сопротивление сжатию без изменения формы, и модуль сдвига, определяющий сопротивление усилиям сдвига. Скорость распространения упругих волн увеличивается прямо пропорционально квадратному корню значений параметров упругости и плотности среды.

Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км3, такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). Сейчас есть три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными, другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Есть еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.

Сопутствующие явления.

Иногда подземные толчки сопровождаются хорошо различимым низким гулом, когда частота сейсмических колебаний лежит в диапазоне, воспринимаемом человеческим ухом, иногда такие звуки слышатся и при отсутствии толчков. В некоторых районах они представляют собой довольно обычное явление, хотя ощутимые землетрясения происходят очень редко. Имеются также многочисленные сообщения о возникновении свечения во время сильных землетрясений. Общепринятого объяснения таких явлений пока нет. Цунами (большие волны на море) возникают при быстрых вертикальных деформациях морского дна во время подводных землетрясений. Цунами распространяются в океанах в пределах глубоководных зон океанов со скоростью 400–800 км/ч и могут вызвать разрушения на берегах, удаленных на тысячи километров от эпицентра. У близлежащих к эпицентру берегов эти волны иногда достигают в высоту 30 м.

При многих сильных землетрясениях помимо основных толчков регистрируются форшоки (предшествующие землетрясения) и многочисленные афтершоки (землетрясения, следующие за основным толчком). Афтершоки обычно слабее, чем основной толчок, и могут повторяться в течение недель и даже лет, становясь все реже и реже.

Состав вулканических пород.

Существует множество типов вулканических пород, различающихся по химическому составу. Чаще всего встречаются четыре типа, принадлежность к которым устанавливается по содержанию в породе диоксида кремния: базальт – 48–53%, андезит – 54–62%, дацит – 63–70%, риолит – 70–76%. Породы, в которых количество диоксида кремния меньше, в большом количестве содержат магний и железо. При остывании лавы значительная часть расплава образует вулканическое стекло, в массе которого встречаются отдельные микроскопические кристаллы. Исключение составляют т.н. фенокристаллы. Цвет вулканического стекла зависит от количества присутствующего в нем железа: чем больше железа, тем оно темнее.

Поверхностные волны

распространяются вдоль земной поверхности или параллельно ей и не проникают глубже 80160 км. В этой группе выделяются волны Рэлея и волны Лява (названные по именам ученых, разработавших математическую теорию распространения таких волн). При прохождении волн Рэлея частицы породы описывают вертикальные эллипсы, лежащие в очаговой плоскости. В волнах Лява частицы породы колеблются перпендикулярно направлению распространения волн. Поверхностные волны часто обозначаются сокращенно как L-волны. Скорость их распространения составляет 3,24,4 км/с. При глубокофокусных землетрясениях поверхностные волны очень слабые.

оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.

1 балл. Ощущается немногими особо чувствительными людьми в особенно благоприятных для этого обстоятельствах.

3 балла. Ощущается людьми как вибрация от проезжающего грузовика.

4 балла. Дребезжат посуда и оконные стекла, скрипят двери и стены.

5 баллов. Ощущается почти всеми; многие спящие просыпаются. Незакрепленные предметы падают.

6 баллов. Ощущается всеми. Небольшие повреждения.

8 баллов. Падают дымовые трубы, памятники, рушатся стены. Меняется уровень воды в колодцах. Сильно повреждаются капитальные здания.

10 баллов. Разрушаются кирпичные постройки и каркасные сооружения. Деформируются рельсы, возникают оползни.

12 баллов. Полное разрушение. На земной поверхности видны волны.

В России и некоторых соседних с ней странах принято оценивать интенсивность колебаний в баллах МSК (12-балльной шкалы Медведева Шпонхойера Карника), в Японии в баллах ЯМА (9-балльной шкалы Японского метеорологического агентства).

Интенсивность в баллах (выражающихся целыми числами без дробей) определяется при обследовании района, в котором произошло землетрясение, или опросе жителей об их ощущениях при отсутствии разрушений, или же расчетами по эмпирически полученным и принятым для данного района формулам. Среди первых сведений о произошедшем землетрясении становится известной именно его магнитуда, а не интенсивность. Магнитуда определяется по сейсмограммам даже на больших расстояниях от эпицентра.

Состав лавы.

Твердые породы, образующиеся при остывании лавы, содержат в основном диоксид кремния, оксиды алюминия, железа, магния, кальция, натрия, калия, титана и воду. Обычно в лавах содержание каждого из этих компонентов превышает один процент, а другие элементы присутствуют в меньшем количестве. Мощность лавовых потоков, как правило, составляет от 3 до 15 м. Более жидкие лавы образуют более тонкие потоки. Когда на поверхности базальтового потока начинается затвердевание, внутренняя часть потока может оставаться в жидком состоянии, продолжая течь и оставляя за собой вытянутую полость, или лавовый тоннель. Поверхность лавового потока бывает ровной и волнистой. Горячая лава, обладающая высокой текучестью, может продвигаться со скоростью более 35 км/ч, однако чаще ее скорость не превышает нескольких метров в час. В медленно движущемся потоке куски застывшей верхней корки могут отваливаться и перекрываться лавой; в результате в придонной части формируется зона, обогащенная обломками. При застывании лавы иногда образуются столбчатые отдельности (многогранные вертикальные колонны диаметром от нескольких сантиметров до 3 м) или трещиноватость, перпендикулярная охлаждающейся поверхности. При излиянии лавы в кратер или кальдеру формируется лавовое озеро, которое со временем охлаждается.

Стадии землетрясения

Стадии землетрясения

Оцените статью
Землетрясения