Наталья Николаевна Чувелева
Эксперт по предмету «География»
преподавательский стаж — 20 лет
Задать вопрос автору статьи
- Океаническая литосфера и её особенности
- Основные типы границ океанических тектонических плит
- Срединно-океанические хребты (СОХ)
- Основные положения тектоники литосферных плит
- Основные положения тектоники плит
- Некоторые доказательства реальности механизма тектоники литосферных плит
- Понятие «литосферная плита»
- Крупные плиты литосферы
- Литосферные плиты России
- Тектоника плит
- Движение тектонических плит
- Теории движения тектонических плит
- Типы движений тектонических плит
- Как устроены литосферные плиты?
- Как двигаются литосферные плиты?
- Что ученые узнали о теории тектоники плит?
- Какое будущее у науки тектоники?
Океаническая литосфера и её особенности
Литосферная оболочка Земли разделена на разрозненные блоки, которые имеют вертикальные размеры намного меньшие, чем горизонтальные. Название этим блокам – тектонические (литосферные) плиты.
Особенностью тектонических плит является жесткость и способность к сохранению неизменных форм и строения длительное время без внешних на них воздействий.
Общая мощность океанических тектонических плит меняется от 2 до 3 км в областях рифтовых зон океанов и составляет 80-90 км около континентальных окраин.
Крупные тектонические плиты планеты играют важнейшую роль на мировой сейсмической карте. Наикрупнейшей плитой по площади является Тихоокеанская. Она полностью состоит из океанической литосферы и охватывает большую часть территории дна от оси Восточно-Тихоокеанского поднятия, простираясь до системы глубоководных желобов западного и северного обрамлений Тихого океана.
Получай знания в онлайн-школе
Подберем репетитора, поможем понять сложные учебные предметы
Намного меньшая по своей площади плита Наска, также полностью состоит из океанической литосферы и располагается на территории дна Тихого океана к востоку от оси ВТП и до осевой линии Перуано-Чилийского желоба.
Ещё одной крупной плитой, которая полностью состоит из океанической литосферы, является плита Кокос.
К крупным тектоническим плитам, которые состоят, как из континентальной, так и из океанической литосферы причисляют также:
- Антарктическую,
- Индо-Австралийскую,
- Евразийскую,
- Африканскую,
- Южно-Американскую,
- Северо-Американскую.
Также выделяют некоторое число (десятки) средних и множество мелких плит.
Основные типы границ океанических тектонических плит
Под литосферой находится пластичная астеносфера, не обладающая пределом прочности, вследствие чего её вещество имеет свойство деформироваться (течь) от воздействия даже сравнительно небольших избыточных давлений и увлекать за собой, при этом, жесткие тектонические плиты. Перемещения тектонических плит по поверхности астеносферы совершается посредством влияния конвективных течений в мантии. Отдельные тектонические плиты могут сближаться, расходится, скользить по отношению друг к другу.
«Тектонические плиты океана» 👇
В соответствии с различными типами движений тектонических плит по отношению друг к другу и возникающих вследствие этого деформаций по периметру плит деформаций, различают три главных вида границ тектонических плит:
- Дивергентные;
- Конвергентные;
- Границы сдвиговых перемещений.
К дивергентному типу относятся границы плит, вдоль которых совершается раздвижение тектонических плит. При этом происходит образование рифтовых зон и непрерывное рождение новой океанической коры. Именно такие границы имеют на ещё одно название – конструктивные.
Большинство нынешних рифтовых зон Индийского и Тихого океанов первоначально закладывались на океанической литосфере благодаря перестройкам движения плит и постепенным исчезновением более ранних рифтовых зон.
Дивергентным границам тектонических плит в океанах соответствует очень мощный базальтовый магматизм, который формирует океаническую кору, находящуюся в рифтовых зонах срединно-океанических хребтов, и несильная сейсмичность.
Базальтовые расплавы, находящиеся в рифтовых зонах океана, выплавляются из пластичного и разогретого материала магматических очагов, которые размещаются под осевой зоной срединно-океанических хребтов, значительно легче базальтов, из которых слагается океаническая кора. Из-за этого и происходит их стремительный подъем к поверхности. Именно поэтому в границах океанических рифтовых зон происходит извержение недифференцированных базальтовых расплавов.
К границам конвергентного типа можно отнести зоны подвига, для которых характерно пододвигание океанических тектонических плит под островные дуги или под континентальные окраины, имеющие андийский тип.
Исходя из того, что на конвергентных границах совершается поглощение коры, их ещё называют деструктивными. Данным границам, в большинстве случаев, соответствуют довольно характерные виды рельефа: сопряженные структуры желобов с глубоким дном (глубина которых, в иных случаях, превышает 10 километров) с цепью островных вулканических дуг или очень высоких горных образований (с высотой около 7-8 километров), в случае, когда подвиг происходит под континент.
Примерами подобных границ служат глубоководные желоба перед Филиппинской, Марианской, Японской, Курило-Камчатской, Алеутской островными дугами, а также глубоководные желоба, находящиеся у подножий западных побережий Южной и Центральной Америки в Тихом океане.
Срединно-океанические хребты (СОХ)
Срединно-океанические хребты – это сеть хребтов, которые расположены в центральных частях каждого из океанов.
Они формируют монолитную горную систему, общая протяженность которой составляет более 64 тысяч км, а ширина около 1000 км. Над абиссальными же котловинами она возвышается на 2.5-3 км. СОХ состоят из плотных и тяжелых магматических пород.
Под центральными участками хребтов имеют свойство подниматься горячие мантийные расплавы (иначе магма). Они приводят к растягиванию земной коры и раздробляют её разломами.
При попадании на дно происходит остывание расплавов. Следующая порция раскаленной магмы раздвигает застывшую лаву и процесс повторяется снова.
Данный процесс разрастания океанической земной коры называется спредингом.
Скорость извержения горячей магмы может разнится. В том случае, когда она поступает медленно, происходит процесс образования рифтовой долины среди хребтов, глубокой расселины, на дне которой находится большое количество активных вулканов. У хребтов с подобными долинами процесс разрастания проходит медленно, скорость их раздвижения на дне Индийского и Атлантического океанов составляет 2-4 сантиметра в год.
В том же случае, когда магма поступает с высокой скоростью, долина не успевает формироваться. Скорость образования новой океанической коры составляет иногда и до 18 сантиметров в год при такой ситуации. Таким является подводный хребет, расположенный в восточной части Тихого океана.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Основные положения тектоники литосферных плит
Основные положения тектоники плитДоказательства реальности механизма тектоники литосферных плит
Тектоника плит (plate tectonics) — современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.
Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной теории тектоники плит. Основные положения тектоники плит сформулированы в 1967-68 группой американских геофизиков — У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов
Основные положения тектоники плит
Основные положения тектоники плит можно свети к нескольким основополагающим
1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.
2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.
Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.
Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:
Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.
Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..
Некоторые литосферные плиты сложены исключительно океанической корой (например, Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.
3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.
Соответственно, выделяются и три типа основных границ плит.
Дивергентные границы – границы, вдоль которых происходит раздвижение плит.
Процессы горизонтального растяжения литосферы называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.
Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.
Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).
Строение континентального рифта
Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).
Строение срединно-океанического хребта
В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.
Именно в этих зонах происходит формирование молодой океанической коры.
Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная — континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.
Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.
При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.
Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).
Модель процесса субдукции
Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого.
В зонах субдукции начинается процесс формирования новой континентальной коры.
Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.
При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.
Модель процесса коллизии
Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).
Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).
Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.
Границы литосферных плит Земли
1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.
4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.
5. Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.
Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.
Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.
Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.
Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.
Рисунок — Силы, действующие на литосферные плиты.
К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.
Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.
Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.
Принципиальная схема мантийной конвекции
Альтернативные схемы мантийной конвекции
Мантийная конвекция и геодинамические процессы
https://youtube.com/watch?v=9khkRFIQf5E%3Frel%3D0
В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).
Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.
Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.
6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.
Некоторые доказательства реальности механизма тектоники литосферных плит
Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.
Рисунок — Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.
Рисунок – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)
Остатки огромной плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7
Полосовые магнитные аномалии
Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.
Рисунок — Образование полосовых магнитных аномалий при спрединге.
Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.
Рисунок — Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).
Валентина Николаевна Норина
преподавательский стаж — 38 лет
Понятие «литосферная плита»
Литосферная плита является частью литосферы и представляет собой крупный стабильный её участок.
Термин появился с возникновением концепции тектоники литосферных плит, во второй половине 60-х годов. Согласно этой концепции литосфера состоит из отдельных крупных блоков (плит), имеющих разные размеры.
Плиты располагаются на астеносфере и медленно перемещаются относительно друг друга. Границами плит являются зоны сейсмической, вулканической, тектонической активности.
Рисунок 1. Движение литосферных плит. Автор24 — интернет-биржа студенческих работ
Английский язык для начинающих
Не откладывай мечты — начни говорить под руководством опытного преподавателя
Специалисты выделяют три типа границ – дивергентные, конвергентные, трансформные.
В одной точке сходиться могут только три плиты, если сходятся четыре или более плит, то такая конфигурация является очень неустойчивой и быстро разрушается.
В тех местах, где литосферные плиты расходятся, а освободившееся между ними пространство заполняется веществом астеносферы, получило название дивергентной границы. Если она пересекает материк, то над ней появляется континентальная рифтовая зона.
В том случае, когда литосферные плиты сходятся, могут возникнуть две ситуации:
- Сходятся континентальная и океанская плиты, в этом случае океанская плита, как более тяжелая и плотная подвигается под легкую континентальную плиту, возникают глубоководные желоба с островными дугами, происходит процесс субдукции – океанская литосфера поглощается мантией.
- При столкновении плит континентальными краями, происходит «торошение» континентальных краев плит – процесс коллизии, в результате которого воздымаются молодые горные сооружения. Довольно часто дивергентные границы называют конструктивными, потому что происходит наращивание океанской коры;
«Плиты литосферы» 👇
Конвергентные границы являются местом столкновения нескольких плит. На этой границе происходят процессы субдукции, обдукции. Это деструктивные границы, потому что происходит погружение океанской коры в мантию на переплавку.
Следующим типом границ литосферных плит является трансформный тип. Плиты просто скользят относительно друг друга без наращивания и поглощения литосферы.
Такое название они получили, потому что трансформируют (соединяют) границы других типов. Очертания литосферных плит постоянно меняются – в результате рифтинга они могут раскалываться и спаиваться, они могут тонуть в мантии, доходя до глубины внешнего ядра.
Специалисты насчитывают 13 литосферных плит, покрывающих 90% поверхности Земли.
Среди них наиболее крупными являются 8 плит:
- Евразийская плита;
- Индо-Австралийская плита;
- Южно-Американская плита;
- Северо-Американская плита;
- Африканская плита;
- Антарктическая плита;
- Тихоокеанская плита;
- Индийская плита.
Литосферные плиты не стоят на месте, они постоянно движутся. Скорость их горизонтального движения разная и варьируется от 1 до 6 см в год. Раздвигаются плиты тоже с разной скоростью – наиболее быстро идет расхождение плит у острова Пасхи (18 см/год). Наиболее медленно раздвигаются плиты в Красном море и Аденском заливе (1-1,5 см/год).
Крупные плиты литосферы
Специалисты предполагают, что наиболее крупные литосферные плиты являются более стабильными участками поверхности Земли.
Рисунок 2. Плиты литосферы. Автор24 — интернет-биржа студенческих работ
Одна из них – Евразийская плита, на которой располагается основная территория материка Евразия. К ней не относятся полуострова Аравийский и Индостан, а также северо-восточный «угол» континента.
Материк Австралия и окружающий его океан вплоть до полуострова Индостан располагаются на Индо-Австралийской плите. Ученые говорят о том, что эта литосферная плита в наше время движется к востоку со скоростью 67 мм/год.
Южная Америка и часть Атлантического океана находятся на Южно-Американской плите, которая образовалась при расколе суперконтинента Гондваны 70 млн. лет назад. Для этой плиты характерна зона субдукции, в которой происходит погружение коры в мантию со скоростью 19 мм/год.
На Северо-Американской плите расположился материк Северная Америка, северо-западная часть Атлантического океана, около половины Северного Ледовитого океана и северо-восточный «угол» Евразии.
Со скоростью 35 мм/год Северо-Американская плита подвигается под Филиппинскую плиту, имеющую средние размеры.
Материк Африка лежит на Африканской плите. Кроме неё на этой литосферной плите располагается часть дна Индийского и Атлантического океанов.
На северо-востоке плита уже раскалывается и происходит отделение плиты, на которой располагается Аравийский полуостров.
В северной части Африканская плита погружается в мантию со скоростью 27 мм/год, а соседние плиты от неё удаляются.
Южную часть планеты занимает Антарктическая литосферная плита, на которой располагается Антарктида и примыкающие участки океанической коры. Это относительно стабильная плита, потому что другие плиты удаляются, а сама она окружена срединно-океаническими хребтами.
Что касается Индийской плиты, то на ней располагается полуостров Индостан. По размерам эта плита является средней. Свое движение от острова Мадагаскар на север она начала 90 млн. лет назад со скоростью 200 мм/год.
Высокая скорость движения связана с её небольшой толщиной. Около 50 млн. лет назад произошло её столкновение с Евразийской плитой, результатом которого стали Гималаи и Тибетское нагорье. Плита движется на северо-восток со скоростью 50 мм/год.
Евразийская же плита убегает от неё на север со скоростью 20 мм/год. Для Индийской плиты характерны три зоны субдукции – погружение в одной зоне идет со скоростью 55 мм/год, в другой зоне скорость погружения увеличивается до 67 мм/год, а в третьей зоне скорость погружения достигает 87 мм/год.
Участок океанической коры дна Тихого океана лежит на Тихоокеанской плите. Размеры этой плиты сокращаются в результате наличия нескольких зон субдукции. Погружение в мантию идет на границе с Евразийской плитой со скоростью 75 мм/год.
Под Индийскую плиту скорость погружения составляет 82 мм/год. Надо сказать, что плита не является тождественной материку даже при наличии одинаковых названий, например, Африканская плита включает не весь материк. Восточная часть Африки относится к Сомалийской плите, которая отделена дивергентной границей.
Африканская плита уходит дальше на запад и захватывает всю восточную часть Атлантического океана. Границы Африканской плиты проходят с шестью смежными плитами. Она имеет дивергентные границы на юге, западе и северо-востоке, трансформный тип на северо-западе и конвергентный тип на севере.
Литосферные плиты России
В основании России лежит 4-е литосферные плиты:
- западная и северная часть страны лежит на Евроазиатской плите;
- северо-восток России находится на Северо-Американской плите;
- Амурская плита является основанием юга Сибири;
- побережье Охотского моря и само море располагаются на Охотоморской плите.
В пределах литосферных плит выделяются две платформы – Восточно-Европейская и Сибирская, а также складчатые подвижные пояса.
С платформами связаны равнинные формы рельефа – Русская и Западно-Сибирская равнины, которые разделяют складчатые Уральские горы.
Юго-западную часть страны занимает Прикаспийская низменность, расположенная ниже уровня Мирового океана на 28 м.
На высоте 100-200 м находятся Западно-Сибирская, Причерноморская, Печорская низменности.
Территория страны имеет наклон к северу, в сторону Северного Ледовитого океана. Вдоль его берегов располагаются возвышенные или гористые острова – Северная Земля, Ляховские, Земля Франца-Иосифа, Новосибирские, остров Врангеля.
На севере материковой части расположены Яно-Индигирская и Колымская низменности, высота которых меняется от 40 до 100 м.
На Кольском полуострове находятся горы Хибины, а на полуострове Таймыр – горы Бырранга.
Тектоника плит
Тектоническая плита – это движущаяся часть литосферы, которая перемещается на астеносфере как относительно жесткий блок.
Тектоника плит – наука, изучающая структуру и динамику поверхности земли. Установлено, что верхняя динамическая зона Земли фрагментирована в плиты, движущиеся по астеносфере. Тектоника плит описывает, в каком направлении перемещаются литосферные плиты, а также особенности их взаимодействия.
Вся литосфера разделена на большие и более мелкие плиты. Тектоническая, вулканическая и сейсмическая активность проявляется по краям плит, что ведет к формированию крупных горных бассейнов. Тектонические движения способны изменять рельеф планеты. В месте их соединения формируются горы и возвышенности, в местах расхождения образуются впадины и трещины в земле.
Профессия «Аналитик данных»
Научись работать с метриками продукта и маркетинга, проводить сбор данных, применять знания статистики для анализа
В настоящее время движение тектонических плит продолжается.
Движение тектонических плит
Литосферные плиты перемещаются относительно друг друга в среднем со скоростью 2,5 см в год. При движении плиты между собой взаимодействуют, особенно вдоль границ, вызывая значительные деформации в земной коре.
В результате взаимодействия тектонических плит между собой образовались массивные горные хребты и связанные с ними системы разломов (например, Гималаи, Пиренеи, Альпы, Урал, Атлас, Аппалачи, Апеннины, Анды, система разломов Сан-Андреас и др.).
Трение между плитами вызывает большую часть землетрясений на планете, вулканическую активность и образование океанических ям.
В состав тектонических плит входит два типа литосферы: континентальная кора и океаническая кора.
Тектоническая плита может быть трех типов:
- континентальная плита,
- океаническая плита,
- смешанная плита.
Теории движения тектонических плит
В изучении движения тектонических плит особая заслуга принадлежит А. Вегенеру, предположившему, что Африка и восточная часть Южной Америки ранее были единым континентом. Однако после произошедшего много млн. лет назад разлома, начался сдвиг частей земной коры.
«Тектонические плиты и их движение» 👇
Согласно гипотезе Вегенера, тектонические платформы, обладающие разной массой и имеющие жесткую структуру, размещались на пластичной астеносфере. Они пребывали в неустойчивом состоянии и все время перемещались, в результате чего сталкивались, заходили друг на друга, формировались зоны раздвижения плит и стыки. В местах столкновений формировались участки с повышенной тектонической активностью, образовывались горы, извергались вулканы и происходили землетрясения. Смещение происходило со скоростью до 18 см в год. Из глубинных слоев литосферы в разломы проникала магма.
Некоторые исследователи считают, что выходящая на поверхность магма постепенно остывала и формировала новую структуру дна. Незадействованная земная кора под действие дрейфа плит погружалась в недра и снова превращалась в магму.
Исследования Вегенера затронули процессы вулканизма, изучение вопросов растяжения поверхности дна океанов, а также вязко-жидкой внутренней структуры земли. Труды А. Вегенера стали фундаментом для развития теории тектоники литосферных плит.
Исследования Шмеллинга доказали существование конвективного движения внутри мантии и приводящего к движению литосферных плит. Ученый считал, что основная причина движения тектонических плит – тепловая конвекция в мантии планеты, при которой нижние слои земной коры нагреваются и поднимаются, а верхние – остывают и постепенно опускаются.
Основное положение в теории тектоники плит занимает понятие геодинамической обстановки, характерной структуры с определенным соотношением тектонических плит. В одинаковой геодинамической обстановке наблюдаются однотипные магматические, тектонические, геохимические и сейсмические процессы.
Теория тектоники плит не объясняет полностью связи между движениями плит и происходящими в глубине планеты процессами. Необходима теория, которая могла бы описать внутреннее строение самой земли, процессы, происходящие в ее недрах.
Положения современной тектоники плит:
- верхняя часть земной коры включает литосферу, обладающую хрупкой структурой и астеносферу, имеющую пластичную структуру;
- основная причина движения плит – конвекция в астеносфере;
- современная литосфера состоит из восьми крупных тектонических плит, порядка десяти средних плит и множества мелких;
- мелкие тектонические плиты располагаются между крупными;
- магматическая, тектоническая и сейсмическая активность сосредоточены на границах плит;
- движение тектонических плит подчиняется теореме вращения Эйлера.
Типы движений тектонических плит
Выделяют различные типы движений тектонических плит:
- дивергентное движение – две плиты расходятся, и между ними образуется подводная горная цепь или пропасть в земле;
- конвергентное движение – две плиты сходятся, и более тонкая плита перемещается под более большую плиту, вследствие чего формируются горные хребты;
- скользящее движение – плиты перемещаются в противоположных направлениях.
В зависимости от типа движения выделяют дивергентные, конвергентные и скользящие тектонические плиты.
Конвергенция приводит к субдукции (одна плита находится над другой) или к коллизии (две плиты сминаются и образуются горные цепи).
Дивергенция ведет к спредингу (расхождение плит и формированием океанических хребтов) и рифтингу (формирование разлома континентальной коры).
Трансформный тип движения тектонических плит подразумевает их перемещение вдоль разлома.
Рисунок 1. Типы движений тектонических плит. Автор24 — интернет-биржа студенческих работ
Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?
Читайте «Хайтек» в
Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.
Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.
Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·106 атм).
Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.
Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.
В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.
Как устроены литосферные плиты?
Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.
Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.
Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.
С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.
Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.
Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.
Карта литосферных плит
Типы столкновений литосферных плит:
Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.
Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.
Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.
Как двигаются литосферные плиты?
Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.
При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.
Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.
Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.
Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.
Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.
Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.
Модель тектоники плит на поверхности вулканического лавового озера
Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:
- Австралийская плита
- Антарктическая плита
- Африканская плита
- Евразийская плита
- Индостанская плита
- Тихоокеанская плита
- Северо-Американская плита
- Южно-Американская плита
Что ученые узнали о теории тектоники плит?
Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.
На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.
Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.
Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.
Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.
А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.
Возраст дна океанов (красный цвет соответствует молодой коре)
Какое будущее у науки тектоники?
Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.
Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.
Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.
В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.
Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.
Аборты и наука: что будет с детьми, которых родят
Земля достигнет критической отметки температуры через 20 лет
В космосе нашли гравитационные волны, меняющие пространство и время. Что это значит?