Тектонические плиты

Тектонические плиты Землетрясения

Слово «геология» с древнегреческого языка переводится так: «изучение земли». Геология и вправду занимается глубоким изучением вещественного состава, особенностей развития и строения твердой оболочки Земли. При этом она включает в себя более двух десятков отдельных научных дисциплин.

В этой статье мы выясним, что такое тектоника и неотектоника. Чем заняты эти науки? Разберемся с такими понятиями, как «литосферная плита», «тектоническая структура», «тектоносфера». Кроме того, мы познакомимся с самыми интересными тектоническими гипотезами, которые существуют на сегодняшний день в науке.

Содержание
  1. Что такое тектоническая плита? И сколько их там всего?
  2. Названия основных литосферных плит в геологии
  3. Что такое тектоника?
  4. Разлом в геологии – что это такое?
  5. Основные положения тектоники литосферных плит
  6. Что такое тектонические структуры
  7. Основные положения тектоники плит
  8. Как это работает?
  9. Главные тектонические гипотезы
  10. Образование геосинклиналей
  11. Классификация тектоники как науки
  12. Определение понятия
  13. Понятие литосферной плиты
  14. Их роль в климате Земли
  15. Формирование
  16. Другие важные понятие тектоники
  17. Тектоника литосферных плит
  18. Развитие теорий
  19. Дрифтовая гипотеза и гипотеза расширенной Земли
  20. Границы плиты
  21. Процессы в земной коре
  22. История тектонической теории плит
  23. Земная кора
  24. Структура
  25. Мантия Земли
  26. Плиты земной коры и их границы
  27. Геосинклиналь
  28. Некоторые доказательства реальности механизма тектоники литосферных плит
  29. Тектоническая активность в прошлом
  30. Изучение геологических процессов
  31. Новейшая тектоника – неотектоника
  32. Ядро Земли

Что такое тектоническая плита? И сколько их там всего?

Тектонические плиты

Основные и некоторые второстепенные тектонические плиты

Тектоническая плита — это массивный кусок литосферы неправильной формы, состоящий из коры и самого верхнего слоя мантии. Геологи выделили несколько тектонических плит, которые подразделяются на три основные категории: крупные, мелкие и микро(плиты).

Всего существует восемь основных тектонических плит, включая Тихоокеанскую, Североамериканскую, Южноамериканскую, Евразийскую, Африканскую, Антарктическую, Австралийскую и Индийскую плиты. Плиты, площадь которых превышает 20 млн. Км 2, классифицируются как основные. Имеется пятнадцать малых плит и множество известных микроплит.

Землетрясения:  2. Глобальная тектоника Земли (тектификация плит)

Названия основных литосферных плит в геологии

Большая часть земной поверхности представлена всего тринадцатью литосферными плитами. Перечислим эти плиты в порядке уменьшения их размеров (в скобках указана приблизительная площадь каждой из них в миллионах квадратных километров):

  • Тихоокеанская (103,3).
  • Североамериканская (75,9).
  • Евразийская (67,8).
  • Африканская (61,3).
  • Антарктическая (60,9).
  • Австралийская (47,0).
  • Южноамериканская (43,6).
  • Сомалийская (16,7).
  • Плита Наска (15,6).
  • Индостанская (11,9).
  • Филиппинская (5,5).
  • Аравийская (5,0).
  • Плита Кокос (2,9).

Помимо этого, существует ряд плит среднего размера, площадь которых не превышает 3 миллионов квадратных километров. Среди них – Карибская, Зондская, Адриатическая, Марианская, Охотская, Тиморская, Амурская, Бирманская и другие.

Тектонические плиты

Что такое тектоника плит? Это один из многих вопросов, которые вы будете решать на ранних этапах уроков географии / геологии. С точки зрения непрофессионала, тектоника плит — это научная теория, которая описывает движения внешней оболочки Земли над ее последующим слоем.

Внешняя оболочка Земли, известная как литосфера, является жесткой и имеет толщину около 100 км. Она состоит из коры (как океанической, так и континентальной) и верхнего слоя мантии.

Ниже литосферы находится астеносфера, вязкий и в основном податливый слой мантии, который позволяет твердому слою сверху скользить и скользить. Он расположен между 80-200 км ниже поверхности земли. Характер и механизм этого движения до сих пор является активной областью исследований.

Структура Земли довольно сложная. Пока что петрофизики (ученые, изучающие физику горных пород) интересуются только земной корой, где можно найти нефть, газ и полезные ископаемые. Но геофизики, исследующие строение Земли, занимаются изучением более глубоких слоев, потому что они влияют на скорость и направление сейсмических волн, вызывающих землетрясения. Это обуславливает важность знания того, что такое тектонические структуры.

Сведения о внутреннем строении Земли необходимы для понимания тектоники плит. Хорошей аналогией представления о том, как выглядит наша планета внутри, является фрукт персика или сливы. Если разрезать его пополам, то можно увидеть, что он состоит из трех частей: очень тонкой кожуры, семени значительного размера, расположенного в центре, и массы плода вокруг него. Земля в разрезе выглядит очень похоже: тонкая кора снаружи, ядро ​в центре и мощный слой, составляющий большую часть массы Земли.

Тектонические плиты

Что такое тектоника?

Начнем нашу статью с самого главного вопроса. Итак, что такое тектоника? Слово «тектоникос» с греческого языка переводится как «строительное дело». Разумеется, в данном случае речь идет вовсе не о возведении каменного дома, а о природном процессе «построения» земной коры.

Тектоника – раздел геологии, изучающий строение тектоносферы Земли. Это, правда, весьма упрощенное определение. В более широком смысле наука тектоника занимается исследованием движений земной коры (как древних, так и современных) и анализом форм залегания горных пород в ее пределах. Помимо этого, она составляет докладное описание геологической истории нашей планеты.

Тектонические плиты

Данная дисциплина зародилась в Европе еще в начале XVII века. Окончательное ее формирование как полноценной науки состоялось лишь во второй половине ХХ века. Что изучает тектоника сегодня? Предметом ее изучения является структура земной коры: от мельчайших геологических складок до грандиозных разломов шириной в несколько сотен километров.

Разлом в геологии – что это такое?

Тело нашей планеты в буквальном смысле слова испещрено разломами – огромными тектоническими и совсем крохотными по размеру (так называемыми микроразломами). Эти области на земной поверхности, как правило, являются зонами повышенной сейсмической опасности. Крупные и разрушительные землетрясения здесь – отнюдь не редкость. Тем не менее в зонах активных геологических разломов продолжают жить люди.

С научной точки зрения, разлом – это нарушение цельности массива горных пород, имеющее четкую территориальную привязку к местности. Крупнейшие разрывы земной коры расположены на стыках двух соседних литосферных плит. Геологические и тектонические разломы – это прямое доказательство того, что земные массы пребывают в постоянном движении.

Ученые назвали пять самых опасных геологических разломов Земли. И в этих районах живут миллионы людей, которые ежедневно и ежеминутно подвержены огромному риску. Вот эти места:

  • Разлом Сан-Андреас (США).
  • Озеро Киву (Руанда и ДР Конго).
  • Японские острова.
  • Остров Суматра (Индонезия).
  • Побережье озера Байкал (Россия).

Кроме того, непосредственно на разломах земной коры расположены десятки крупных городов мира. Самые известные среди них – Стамбул, Токио, Сиэтл, Сан-Франциско, Лос-Анджелес.

Основные положения тектоники литосферных плит

Основные положения тектоники плитДоказательства реальности механизма тектоники литосферных плит

Тектоника плит (plate tectonics) — современная геодинамическая концепция, основанная на положении о крупномасштабных горизонтальных перемещениях относительно целостных фрагментов литосферы (литосферных плит). Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Впервые предположение о горизонтальном движении блоков коры было высказано Альфредом Вегенером в 1920-х годах в рамках гипотезы «дрейфа континентов», но поддержки эта гипотеза в то время не получила. Лишь в 1960-х годах исследования дна океанов дали неоспоримые доказательства горизонтальных движении плит и процессов расширения океанов за счёт формирования (спрединга) океанической коры. Возрождение идей о преобладающей роли горизонтальных движений произошло в рамках «мобилистического» направления, развитие которого и повлекло разработку современной  теории тектоники плит. Основные положения тектоники плит  сформулированы в 1967-68 группой американских геофизиков — У. Дж. Морганом, К. Ле Пишоном, Дж. Оливером, Дж. Айзексом, Л. Сайксом в развитие более ранних (1961-62) идей американских учёных Г. Хесса и Р. Дигца о расширении (спрединге) ложа океанов

Что такое тектонические структуры

Они являются большими участками земной коры, их размеры ограничивают глубинные разломы. Изучением строения и движения земной коры занимается тектоника.

Следует отметить, что тектонические структуры, такие как платформы и подвижные пояса, являются самыми крупными. Платформа представляет собой относительно устойчивый участок земной коры. Поверхность ее довольно плоская. Ее характерной чертой является двухслойное строение: она состоит из кристаллического фундамента, сложенного древними твердыми породами (он расположен снизу), и осадочного чехла, который сформировали более поздние отложения. В тектонической структуре России, например, выделяют Сибирскую платформу и Восточно-Европейскую плиту.

На платформе имеются щиты и плиты. Первый представляет собой приподнятый до земной поверхности участок кристаллического фундамента, частично покрытый осадочным чехлом. Вторая является таким участком платформы, фундамент которого погружен на глубину, его полностью покрывает осадочный чехол. Подвижной пояс — это удлиненный участок земной коры, в пределах которого происходили и происходят движения земной коры.

Таким образом можно считать, что такие тектонические структуры земной коры являются основными. Их строение обуславливает состав элементов поверхности планеты. Например, тектоническая структура равнины, может включать фундамент и осадочный чехол.

Тектонические плиты

Основные положения тектоники плит

Основные положения тектоники плит можно свети к нескольким основополагающим

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы. Литосфера делится на 8 крупных плит, десятки средних плит и множество мелких. Между крупными и средними плитами располагаются пояса, сложенные мозаикой мелких коровых плит.

Границы плит являются областями сейсмической, тектонической и магматической активности; внутренние области плит  слабо сейсмичны и характеризуются слабой проявленностью эндогенных процессов.

Более 90 % поверхности Земли приходится на 8 крупных литосферных плит:

Австралийская плита,
Антарктическая плита,
Африканская плита,
Евразийская плита,
Индостанская плита,
Тихоокеанская плита,
Северо-Американская плита,
Южно-Американская плита.

Средние плиты: Аравийская (субконтинент), Карибская, Филиппинская, Наска и Кокос и Хуан де Фука и др..

Некоторые литосферные плиты сложены исключительно океанической корой (например,  Тихоокеанская плита), другие включают фрагменты и океанической и континентальной коры.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.

Соответственно, выделяются и три типа основных границ плит.

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Процессы горизонтального растяжения литосферы называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).

Строение континентального рифта

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг (от англ. spread – расстилать, развёртывать).

Строение срединно-океанического хребта

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы – границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная — континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция – процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Модель процесса субдукции

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого.

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции – надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы – границы, вдоль которых происходят сдвиговые смещения плит.

Границы литосферных плит Земли

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга. Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей.  При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются  в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла  идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет  горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Рисунок — Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно  больше, чем под океанами, величина силы FDC почти на порядок уступает величине FDO. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB (индекс в обозначении силы – от английского negative buoyance). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” (mantle drag mechanism), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO и FDC; 2) связанные с силами, приложенными к краям плит (edge-force mechanism), на рисунке  – силы FRP и FNB. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Принципиальная схема мантийной конвекции

Альтернативные схемы мантийной конвекции

Мантийная конвекция и геодинамические процессы

https://youtube.com/watch?v=9khkRFIQf5E%3Frel%3D0

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера. Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Как это работает?

Как работает тектоника плит? Или, точнее, что заставляет массивные тектонические плиты перемещаться по планете? Ответ будет двояким. Первый — некая мантийная конвекция (пока неясно), а второй — гравитация.

Тектонические плиты

Конвекция в мантии

Мантийная конвекция — это процесс, при котором тепло из недр земли медленно передается на поверхность конвекционными потоками. Она управляет тектоникой плит на земле посредством тяги (погружения) и толкания (распространения).

Горячая лава поднимается в середине океанических хребтов, а холодная, относительно плотная океаническая литосфера погружается глубоко в мантию в зонах субдукции. Долгое время этот процесс считается ведущей силой, заставляющей двигаться тектонические плиты.

Однако ученые-геологи сейчас считают, что гравитация играет в тектонике плит гораздо более важную роль, чем считалось ранее. Новая кора, формирующаяся на срединно-океанических хребтах, значительно менее плотная, чем астеносфера. Она постепенно отходит от расходящейся границы и становится прохладнее (за счет проводящего охлаждения), а также плотнее. Более высокая плотность океанической литосферы по сравнению с астеносферой позволяет ей опускаться вглубь мантии в зонах субдукции.

Механизм, позволяющий новой коре медленно удаляться от срединно-океанических хребтов, известен как гравитационное скольжение (обычно называемое хребтовым толчком). По мере формирования новой океанической литосферы вблизи хребта гравитация заставляет ее опускаться вниз и толкать старые материалы, чтобы удалиться от хребта дальше.

Главные тектонические гипотезы

Тектонические гипотезы – это научно обоснованные предположения относительно причин и характера движений земной коры. Все они так или иначе сводятся к двум основным группам – фиксизму и мобилизму.

Тектонические плиты

Гипотеза фиксизма предполагает, что существующие материки оставались в статичном положении на протяжении всего геологического времени и не изменяли своего местоположения. При этом решающую роль в развитии коры планеты играли и продолжают играть вертикальные тектонические движения.

Гипотеза мобилизма предусматривает наличие горизонтальных перемещений отдельных массивов земной коры. Чем вызваны эти перемещения? Сторонники гипотезы выдвигают несколько возможных причин: неравномерность в нагревании глубинных слоев планеты, изменения земного радиуса и прочие.

Образование геосинклиналей

Источником осадков для этих тектонических структур является континентальный кратон. В примере с Северной Америкой большая часть осадков с материка в конечном итоге сбрасывается в Атлантический океан и Мексиканский залив.

Геосинклинали откладываются вдоль заднего края. Если континентальная плита меняет свое относительное направление движения, а задняя кромка становится передней, геосинклиналь сжимается и складывается. Это произошло в восточной части Северной Америки и привело к складыванию Аппалачей. Седиментация для формирования геосинклинали представляет собой основной геологический цикл, который развивается в течение нескольких сотен миллионов лет и может повторяться несколько раз.

Классификация тектоники как науки

Являясь составной частью геологии, тектоника, в свою очередь, и сама подразделяется на несколько научных дисциплин. Перечислим основные разделы тектоники. Это:

  • Структурная геология.
  • Тектонофизика.
  • Неотектоника.

Структурная геология изучает характер и формы залегания горных пород в коре нашей планеты. Эти формы подразделяются на первичные и вторичные. Данная научная дисциплина сформировалась в конце XIX века и в наши дни все теснее «срастается» с собственно тектоникой.

Тектоническая физика (или просто – тектонофизика) интересуется чисто физическими аспектами деформаций геологических тел в тектоносфере. Причем масштабы интересов этой науки разные: от отдельных минералов до крупных литосферных плит.

Неотектонике мы уделим особое внимание далее в нашей статье.

Определение понятия

Мы уже выяснили, что такое тектоника. Для более глубокого понимания темы, следует также разобраться с еще одним научным понятием – тектоносферой.

Нередко этот термин отождествляют с земной корой. Это не совсем верно. Тектоносферой принято называть внешнюю твердую оболочку Земли, которая включает в себя земную кору и верхний слой мантии (так называемую астеносферу). Это та область планеты, в пределах которой проявляются все магматические и тектонические процессы.

Этот термин был введен в геологическую науку совсем недавно – в 70-х годах прошлого века. Следует отметить, что тектоносфера Земли неоднородна как в вертикальном, так и в горизонтальном разрезе.

Понятие литосферной плиты

Под литосферной плитой подразумевают довольно крупный и целостный фрагмент земной коры. Каждый из них отличается определенными размерами и своими четкими границами. Литосферные плиты при этом постоянно меняют свои очертания, они могут раскалываться и срастаться друг с другом. По предположениям некоторых ученых, плиты также могут углубляться в земную мантию, достигая внешнего ядра планеты.

Предположение о существовании литосферных плит впервые высказал канадский ученый Дж. Вильсон в 1965 году. Спустя некоторое время В. Морган и К. Ле-Пишон определили границы этих участков земной коры. Однако в современной теории литосферных плит не все так однозначно. По мере геологических исследований Земли учеными выделяются совершенно новые плиты, а границы других признаются несуществующими.

Земная кора делится на два типа: континентальную и океаническую. Соответственно, одни литосферные плиты состоят исключительно из океанической коры (как, например, Тихоокеанская). Другие, в свою очередь, сложены из нескольких блоков двух разных типов коры.

Все литосферные плиты пребывают в постоянном движении. Одни двигаются быстрее, другие – медленнее. В среднем скорость перемещения плит в наши дни составляет 2-6 см/год.

Тектонические плиты

Их роль в климате Земли

Ряд исследований, проведенных астробиологами и геологами, показал, что тектоника плит может быть существенно важной для поддержания жизни на земле в ее нынешнем виде. Без рециркуляции его коры, мы не могли бы иметь стабильную температуру на поверхности. Без субдукции и создания новой коры земные океаны могли бы остаться лишенными питательных веществ, дающих жизнь. Исследование, проведенное в 2015 году, даже утверждает, что тектоника плит имеет важное значение для эволюции передовых видов.

Формирование

Тектоника плит изменяет положение и форму континентов и океанов за период, составляющий примерно 4 миллиарда лет. Гидротермальные процессы сконцентрировали большинство известных металлических рудных тел вдоль границ конвергентных плит, например, золотые месторождения Калифорнии и Аляски.

Гидротермальные процессы также активны на границах расходящихся плит, таких как срединно-атлантический хребет и Красное море.

Кроме того, границы конвергентных плит создают условия, которые позволяют накапливать нефть в море или на суше у берега. Поскольку скалы изгибаются за счет движения плит, образуются ловушки для углеводородов. Тепло и давление, создаваемые опадающими плитами, помогают высвобождать нефть из пород, оставляя ее свободной для миграции в такие ловушки.

Понижение, поднятие и горообразование – термины, используемые геологами, чтобы описать движение одной части тектонической структуры относительно другой.

Причиной перемещений является напряжение, создаваемое относительным движением плит континентального и морского дна. Как правило, это очень медленные процессы, поэтому ученым необходимо делать чрезвычайно точные наблюдения, чтобы увидеть их результаты. Например, Скалистые горы все еще растут со скоростью несколько дюймов на сотню лет из-за скольжения Тихоокеанской плиты относительно западного края Североамериканской. Соответственно, все эти процессы обуславливают взаимосвязь формы рельефа и тектонической структуры.

Тектонические плиты

Другие важные понятие тектоники

Тектоническая структура – это совокупность складчатых сооружений, разломов и разрывов земной коры на той или иной территории. Она тесно связана с рельефом, геологическим строением и полезными ископаемыми конкретного региона. Если говорить точнее, она определяет все вышеперечисленное.

Тектонические плиты

Тектонический рельеф – это крупнейшие формы земной поверхности, которые были образованы в результате движений литосферных плит коры (вертикальных или горизонтальных). К ним относятся складчатые области, горные хребты и межгорные котловины, тектонические разломы и сдвиги, синклинали и антиклинали, и другие.

Тектоника литосферных плит

Эта геологическая теория считается осовремененным вариантом мобилизма. Впервые она была высказана в 1970 году.

Согласно данной теории, тектоносфера Земли не является цельной. Она разбита на ряд крупных плит, которые подвержены горизонтальным перемещениям. Они двигаются по относительно вязкой астеносфере, в некоторых местах сталкиваясь друг с другом (здесь образуются складчатые области – горы и океанические хребты). На других участках одна плита находит на другую, «забуривая» последнюю в толщу земной мантии.

Данная теория поддерживается на сегодняшний день многими учеными и географами. Ведь она объясняет многие природные явления: горообразование, вулканизм, землетрясения и другие.

Тектонические плиты

Развитие теорий

Тектоника плит и миграция континентов — центральная особенность современной теории строения Земли. Впервые эта концепция была упомянута Антонио Снайдер-Пеллегрини в 1858 году, который приписал ее библейскому потопу. В 1912 году Альфред Вегенер выдвинул теорию, которая учитывала движение континентов и явное блуждание Северного и Южного полюсов. Однако только в середине 1960-х годов она была принята геологическим сообществом.

Тектонические плиты

Первоначально теория была названа термином «дрейф континентов». Однако выяснилось, что многие другие части поверхности также движутся и не перемещают на себе материки, поэтому термин «тектоника плит» является предпочтительным, так как он более правильно описывает реальную ситуацию.

Разведка дна океана, проведенная в 1960-х годах в рамках проекта глубоководного бурения, показала, что система хребтов окружает земной шар примерно посередине каждого океана. Скалы в этих подводных горных системах очень молоды по сравнению с остальной частью морского дна. После изучения морского дна теория Вегенера была расширена. В нее было включено движение пород под континентами. Этот процесс назвали субдукцией.

Дрифтовая гипотеза и гипотеза расширенной Земли

В группу гипотез мобилизма, помимо прочих, входит так называемая дрифтовая гипотеза. Ее выдвинул Альфред Вегенер в 1912 году. Согласно гипотезе, все материки нашей планеты активно перемещаются (дрейфуют) по скользкому базальтовому слою в заданном направлении. Когда-то якобы существовал единый суперконтинент Пангея, который в дальнейшем раскололся на несколько частей. Данная гипотеза опирается на схожесть (сочетаемость) очертаний соседних материков планеты.

Стоит упомянуть и о гипотезе расширенной Земли (Expanding Earth Theory), которую в 1859 году выдвинул английский ученый Альфред Дрейсон. Позднее ее поддержал и ряд российских геологов. Согласно этой идее, диаметр нашей планеты в далеком геологическом прошлом был намного меньше современного.

Тектонические плиты

Если верить данной гипотезе, несколько миллиардов лет назад континентальная кора Земли была цельной. Но затем планета начала расширяться, и в ее коре образовались разрывы, которые стали постепенно заполняться водой. Так и возникли современные океаны. Сторонники гипотезы расширенной Земли утверждают, что наша планета расширяется примерно на два сантиметра в год.

Границы плиты

Тектонические плиты

Тектонические плиты многократно взаимодействуют друг с другом, и место, где они взаимодействуют, называется границами плит. По характеру этого взаимодействия границы плит можно разделить на три типа: расходящиеся, сходящиеся и трансформирующиеся.

Расходящаяся граница — это место, где две противоположные литосферные плиты удаляются друг от друга, оставляя за собой зазор. Этот разрыв заполняется магмой, которая поднимается изнутри земной мантии.

Лучшим примером расходящейся границы является срединно-океанический хребет, где тектонические плиты постепенно удаляются друг от друга, в то время как восходящая магма непрерывно создает новую кору.

Сходящаяся граница, с другой стороны, — это место, где одна литосферная плита опускается под другую. Эти регионы также известны как зоны субдукции, где часто происходят землетрясения и извержения вулканов.

Третий тип границы плит — это трансформирующийся разлом, когда плиты скользят друг о друга по горизонтали. Хотя большая часть разломов трансформации находится под океанами, лишь немногие из них наблюдаются на суше, как, например, калифорнийский разлом Сан-Андреас.

Другими примерами границы преобразования являются разлом Чамана в Пакистане, Северо-Анатолийский разлом в Турции и разлом Королевы Шарлотты в Соединенных Штатах.

Процессы в земной коре

Конвергентные границы тектонических структур (то есть между теми, которые движутся в разные стороны) вызывают сжатие земной коры, что приводит к ее складчатости, чрезмерному поднятию или утолщению. Расходящиеся границы вызывают рифтинг (образование впадин), понижение или утончение. Изучение процессов земной коры позволяет выявить тектоническую структуру рельефа.

Столкновение плиты морского дна с континентальной платформой обычно приводит к возникновению горных систем, таких как Скалистые горы (расположены вдоль западного побережья Северной Америки), Анды и Аппалачи. Столкновение двух континентальных плит также создает горы, такие как Гималаи на границе Индийского и Азиатского субконтинентов.

Тектонические плиты

История тектонической теории плит

Теория тектоники плит — это современная, значительно усовершенствованная версия знаменитой гипотезы дрейфа континентов Альфреда Вегенера, которую он представил в 1912 году. Он предположил, что все континенты были когда-то частью единого массива суши (который он назвал Пангеей) до распада и принятия их нынешней формы. Вегенер, однако, не смог дать правдоподобного объяснения того, как массивные континенты могли двигаться.

Анимация континентального дрейфа за последние 250 миллионов лет

Исследователи начали замечать сходство между формами континентов на каждой стороне Атлантического океана впервые в 16 веке. Несколько выдающихся географов, в 17 и 18 веках, отметили, что континенты Африки и Южной Америки, похоже, тесно связаны друг с другом.

Было предложено несколько теорий для объяснения таких явлений, но ни одна из них не была достаточно достоверной. Теория континентального дрейфа Вегенера также подвергалась критике и даже была отвергнута несколькими геологами.

Только в 1960-х годах, после прямых сейсмологических свидетельств распространения морского дна, научное сообщество приняло тектонику плит (и, в конечном итоге, теорию континентального дрейфа).

Земная кора

Существует два ее типа:

  • Тонкая океаническая, лежащая в основе бассейнов океанов.
  • Более толстая континентальная, находящаяся, соответственно, под континентами.

Низкая плотность континентальной коры позволяет ей «плавать» на мантии, плотность которой значительно ниже. В состав океанической в основном входит базальт, а континентальную, как правило, составляет гранит.

Структура

Земля разделена примерно на восемь больших, жестких, но смещающихся плит и множество малых. Основные плиты поддерживают одно (или более) массивное континентальное плато, часто называемое кратоном.

Существует три типа границы основных тектонических структур, а именно:

  • Расходящаяся (межпланетный рифт).
  • Сдвиговая (где плиты скользят друг за другом).
  • Сходящаяся (где сталкиваются две плиты, одна из которых обычно подвергается субдукции и поглощению).

Рифтинг создает срединно-океанические хребты и расширяет океаны. Субдукция сужает океан, а изгиб пластин создает прибрежные горы.

Тектонические плиты

Мантия Земли

Считается, что она состоит в основном из богатой оливином породы. Ее температура может быть разной, что зависит от глубины. Самые низкие ее показатели непосредственно под корой. Самая высокая отмечается при контакте вещества мантии с тепловыделяющим ядром. Устойчивое повышение температуры с увеличением глубины носит название геотермического градиента. Эта физическая величина обуславливает разное поведение породы, на основании чего мантия разделяется на две различные зоны.

Скалы в верхней части мантии холодные и хрупкие. Благодаря этому они могут разрушаться под воздействием напряжения и вызывать землетрясения. В нижней части камни горячие и мягкие (но не расплавленные). Они не разрушаются под воздействием внешних сил, а растекаются.

Тектонические плиты

Плиты земной коры и их границы

Границы литосферных плит бывают двух типов:

  • Дивергентные (границы раздвигания).
  • Конвергентные (границы столкновения).

Если две плиты двигаются в противоположные стороны, то граница между ними будет называться дивергентной. В рельефе такая зона будет выражена рифтом – океаническим или континентальным.

Если же две плиты двигаются друг к другу, то между ними образуется конвергентная граница (или так называемая зона столкновения). И здесь возможны три варианта:

  • Встречаются две континентальные плиты (формируется складчатая область).
  • Встречаются две океанические плиты (одни из плит «ныряет» под другую, более плотную).
  • Континентальная плита сталкивается с океанической (материковая плита «находит» на менее плотную океаническую).

В отдельных редких случаях плиты не сходятся и не расходятся, а просто трутся друг о друга своими краями. На какое-то время они сжимаются, но потом расходятся, высвобождая большое количество энергии и провоцируя мощные землетрясения. Самый яркий пример такой зоны – это разлом Сан-Андреас в Калифорнии.

Тектонические плиты

Геосинклиналь

Это подвижная часть земной коры вытянутой формы. Она является фундаментальной геологической единицей и тектонической структурой. Геосинклиналь образована осадочными породами, отложенными под морем параллельно береговой линии. Она увеличивается до тех пор, пока продолжается оседание.

Классическая геосинклиналь разделена на две части:

1. Миогеоклин (miogeocline).

2. Эугеоклин (eugeocline).

Первая состоит из отложений, которые образуют континентальный шельф, а вторая – из отложений на возвышении в более глубоких водах на некотором расстоянии от берега.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок  — Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Рисунок  – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной  плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Полосовые магнитные аномалии

​Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок  — Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок — Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

Тектоническая активность в прошлом

Самому старому фрагменту континентальной коры, найденному на Земле, около 4,02 миллиардов лет (сам возраст Земли составляет 4,54 миллиарда лет). Однако, поскольку океаническая литосфера постоянно перерабатывается, самому раннему известному морскому дну всего около 340 миллионов лет. Он был обнаружен в части восточного Средиземного моря.

Исследователи полагают, что тектоническая активность впервые началась на Земле около 3-3,5 миллиардов лет назад, основываясь на древних породах и минералах, добытых со всего земного шара. Континенты были здесь на протяжении большей части земной истории; тем не менее, они, вероятно, прошли через несколько конфигураций, прежде чем достигнут той формы, в которой они находятся сегодня.

Значительное количество исследований было сделано для реконструкции истории тектоники плит на земле. Непрерывное (хотя и медленное) движение тектонических плит позволяет континентам формироваться и разрушаться с течением времени. Это включает в себя окончательное образование (и распад) суперконтинента, единой массы суши, которая содержит все континенты.

Считалось, что первый суперконтинент сформировался еще 2 миллиарда лет назад и распался около 1,5 миллиарда лет назад или около того. Он называется Колумбия или Нуна.

Тектонические плиты

Следующий (возможно) суперконтинент, Родиния, образовался 1 миллиард лет назад, а затем разорвался примерно 600 миллионов лет назад. Пангая, последний суперконтинент, был создан около 300 миллионов лет назад в позднепалеозойскую эпоху.

Когда Пангея распалась почти 175 миллионов лет назад, она была разделена на две большие части; Прото-Лавразия и Прото-Гондвана, в то время как оба были разделены Океаном Тетис.

Лавразия стала тем, что мы теперь знаем, как Европа, Азия и Северная Америка, в то время как Гондвана стала остальным миром, который включает Индийский субконтинент, Африку, Южную Америку, Аравию, Австралию и Антарктиду.

Изучение геологических процессов

Современное расположение слоев горных пород в коре определяют исторические геологические события. Они варьируются от медленных и постепенных, таких как эрозия и тектоника плит, до катастрофических, таких как метеорные удары или извержения вулканов. Эти процессы постоянно изменяют геометрию горных пород, составляющих земную кору. Данное явление наблюдается как на континентах, так и под океанами. Рельеф земной поверхности зависит от того, на какой тектонической структуре происходит его формирование.

Поверхностная кора довольно жесткая, но разбита на несколько пластин, которые могут свободно перемещаться по мантии. Около 75% поверхности Земли покрыто океанами, под каждым из которых находится одна или несколько пластин. Континенты представляют собой массы суши (преимущественно над уровнем моря), которые также состоят из одной или нескольких плит. Их движение относительно друг друга называется тектоникой плит. Эти процессы ученые начали подробно изучать более 150 лет назад.

Новейшая тектоника – неотектоника

Научная дисциплина, изучающая новейшие движения земной коры, называется неотектоникой. Под «новейшими» имеются в виду те движения и деформации коры, которые происходили в неогеновом и продолжают происходить в четвертичном периодах геологической истории Земли.

Неотектонические движения проявляются в виде горизонтальных и вертикальных смещений блоков горных пород. Их средние скорости исчисляются всего несколькими миллиметрами за год. Тем не менее именно они обусловили все то разнообразие, которые мы наблюдаем в современном рельефе нашей планеты.

Неотектоника зародилась и активно развивалась в первой половине ХХ века. В 1937 году советский геолог Сергей Шульц на семнадцатой сессии Международного геологического конгресса представил основные теоретические положения новой научной дисциплины. Одно из последних достижений этой науки – «Карта новейшей тектоники Северной Евразии», созданная А. Ф. Грачевым. Неотектонические исследования крайне важны для поиска полезных ископаемых, а также используются в различных геологических и инженерных работах.

Ядро Земли

Считается, что оно состоит из сплава железа и никеля. Этот состав основан на расчетах его плотности. Также учитывается тот факт, что многие метеориты (которые считаются частями внутренней части планетарного тела) представляют собой железо-никелевые сплавы. Ядро является своеобразной печкой Земли, потому что оно содержит радиоактивные материалы, выделяющие тепло при расщеплении на более стабильные вещества.

Оно делится на две разные зоны. Внешнее ядро ​​жидкое, так как температура там достаточная для плавления железо-никелевого сплава. Внутреннее ядро ​​является твердым, хотя его температура выше, чем у внешнего. Здесь огромное давление, создаваемое весом вышележащих пород, достаточно сильное, чтобы плотно сжать атомы и предотвратить его трансформацию в жидкое состояние.

Оцените статью
Землетрясения