Теории дрейфа континентов и литосферных плит

Теории дрейфа континентов и литосферных плит Землетрясения
Содержание
  1. Теория дрейфа материков
  2. Критика теории дрейфа и отказ от теории
  3. Дивергентные границы или границы раздвижения плит
  4. Становление тектоники плит
  5. Тектоника плит в СССР
  6. Сила, двигающая плиты
  7. Ссылки
  8. Некоторые доказательства реальности механизма тектоники литосферных плит
  9. История теории тектоники плит
  10. Когда вы идёте по земле, она кажется очень твёрдой и устойчивой, однако наша планета постоянно движется, она вращается вокруг Солнца, вращается вокруг своей оси, а еще земля, по которой мы ходим, тоже движется.
  11. Конвергентные границы
  12. Активные континентальные окраины
  13. Трансформные границы
  14. Сдвиги на континентах
  15. Появление теории тектоники плит
  16. Внутриплитные процессы
  17. Траппы и океанические плато
  18. Теория геосинклиналей
  19. Тектоника плит как система наук
  20. Тектоника плит на других планетах
  21. Когда началась тектоника плит на Земле
  22. Влияние перемещений плит на климат
  23. Значение тектоники плит

Теория дрейфа материков

Против этой схемы выступил немецкий ученый метеоролог — Альфред Вегенер. 6 января 1912 года он выступил на собрании Немецкого геологического общества с докладом о дрейфе материков. Исходной посылкой к созданию теории стало совпадение очертаний западного побережья Африки и восточного Южной Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного материка.

Вегенер не удовлетворился совпадением очертаний побережий (которые неоднократно замечались до него), а стал интенсивно искать доказательства теории. Для этого он изучил геологию побережья обоих континентов и нашел множество схожих геологических комплексов, которые совпадали при совмещении, так же как и береговая линия. Другим направление доказательства теории стали палеоклиматические реконструкции. При этом он фактически заложил основы палеоклиматологии — науки о реконструкциях климата в древних геологических эпохах. Восстановив положение климатических зон на континентах в разные геологические эпохи, Вегенер ясно показал, что при современном расположении континентов климатическая зональность древних геологических эпох необъяснима, но всё становится на свои места, если предположить, что Африка, обе Америки и Индия образовывали единый континентальный блок.

Землетрясения:  Какие плиты и в каком направлении двигались в Турции. Визуальное объяснение. Я объясняю пальцами

Так же доказательством теории стали палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы по обе стороны Атлантического океана. Они очень схожи, но разделены многокилометровой водной пустыней, и для них трудно предположить, что они пересекли океан или прорыли трансатлантические норы.

И наконец Вегенер стал искать геофизические и геодезические доказательства. В 1923 году он отправляется в Гренландию, чтобы измерить с высокой точностью её положение, и доказать, что расстояние между Европой и Гренландией непрерывно увеличивается. Во время этой экспедиции он гибнет, но перед смертью он уже знает, что научное сообщество не приняло его теорию.

Критика теории дрейфа и отказ от теории

Изначально теория дрейфа материков было принята научным сообществом благосклонно, но в 1922 году она подверглась жесткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе, двигающей плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог. В качестве источника движения плит предлагались сила Кориолиса, приливные явления и некоторые другие, однако простейшие расчеты показывали, что всех их абсолютно недостаточно, для перемещения огромных континентальных блоков.

Критики теории Вегенера поставили во главу угла вопрос о силе двигающей континенты и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах, для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды о Атлантиде. Стоит отметить, что не все ученые признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так, Дю Тойтом образование Гималайских гор было объяснено столкновением Индостана и Евразийской плиты.

Землетрясения:  Вулкан Сан-Педро на карте Южной Америки и Сан-Педро на спутниковой карте

Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах, для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды о Атлантиде. Стоит отметить, что не все ученые признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так, Дю Тойтом образование Гималайских гор было объяснено столкновением Индостана и Евразийской плиты.

Дивергентные границы или границы раздвижения плит

Это границы между плитами, двигающимися в противоположные стороны. В рельефе Земли эти границы выражены рифтами, в них преобладают деформации растяжения, мощность коры пониженная, тепловой поток максимален, и происходит активный вулканизм. Если такая граница образуется на континенте, то формируется континентальный рифт, который в дальнейшем может превратиться в океанический бассейн с океаническим рифтом в центре. В океанических рифтах в результате спрединга формируется новая океаническая кора.

Теории дрейфа континентов и литосферных плит

Теории дрейфа континентов и литосферных плит

Схема строения срединно-океанического хребта

На океанической коре рифты приурочены к центральным частям срединно-океанических хребтов. В них происходит образование новой океанической коры. Общая их протяжённость более 60 тысяч километров. К ним приурочено множество гидротермальных источников, которые выносят в океан значительную часть глубинного тепла, и растворённых элементов. Высокотемпературные источники называются чёрными курильщиками, с ними связаны значительные запасы цветных металлов.

Раскол континента на части начинается с образования рифта. Кора утончается и раздвигается, начинается магматизм. Формируется протяжённая линейная впадина глубиной порядка сотен метров, которая ограничена серией сбросов. После этого возможно два варианта развития событий: либо расширение рифта прекращается и он заполняется осадочными породами, превращаясь в авлакоген, либо континенты продолжают раздвигаться и между ними, уже в типично океанических рифтах, начинает формироваться океаническая кора.

Становление тектоники плит

Сейчас тектоника плит подтверждена прямыми измерениями скорости плит методом интерферометрии излучения от далеких квазаров. Результаты многолетних исследований полностью подтвердили основные положения теории тектоники плит.

Тектоника плит в СССР

С новой силой борьба фиксистов, сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что континенты все-таки двигаются, разгорелась в 1960-е гг., когда в результате изучения дна океанов были найдены новые подходы к понимаю тектонических процессов.

К началу 1960-х гг. была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты, которые возвышаются на 1,5—2 км над абиссальными равнинами, покрытыми осадками. Эти данные позволили Р. Дицу и Г. Хессу в 1962—1963 гг. выдвинуть гипотезу спрединга («sea flow spreading» — «растекание морского дна»). Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно впаяны в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.

В 1963 г. гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы Р. Мэйсоном и независимо Ф. Вайном и М. Мэтьюзом как запись инверсий магнитного поля, зафиксированная в намагниченности базальтов дна океана. После этого тектоника плит начала «победное шествие»: всё больше ученых стали понимать, что именно эта теория дает реальные объяснения сложнейшим земным процессам.

Сила, двигающая плиты

Сейчас уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных теплогравитационных течений — конвекции. Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на её поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла земной коре. Этот процесс переноса тепла (следствие всплывания лёгких-горячих масс и погружения тяжёлых-более холодных масс) идёт непрерывно, в результате чего возникают конвективные потоки. Эти потоки — течения замыкаются сами на себя и образуют устойчивые конвективные ячейки, согласующиеся по направлениям потоков с соседними ячейками. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения увлекает плиты в горизонтальном же направлении с огромной силой за счёт огромной вязкости мантийного вещества. Если бы мантия была совершенно жидкой — вязкость пластичной мантии под корой была бы малой (скажем, как у воды или около того), то через слой такого вещества с малой вязкостью не могли бы проходить поперечные сейсмические волны. А земная кора увлекалась бы потоком такого вещества со сравнительно малой силой. Но, благодаря высокому давлению, при относительно низких температурах, господствующих на поверхности Мохоровичича и ниже, вязкость мантийного вещества здесь очень велика (так что в масштабе лет вещество мантии Земли жидкое (текучее), а в масштабе секунд — твёрдое).

При пластической (хрупкой) деформации очень быстро (в темпе смещения коры при землетрясении) уменьшается и напряжение в ней — сила сжатия в очаге землетрясения и его окрестностях. Но сразу же по окончании неупругой деформации продолжается прерванное землетрясением очень медленное нарастание напряжения (упругой деформации) за счёт очень медленного же движения вязкого мантийного потока, начиная цикл подготовки следующего землетрясения.

Таким образом, движение плит — следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель.

Относительно причины высокой температуры недр Земли существует несколько гипотез. В начале XX века была популярна гипотеза радиоактивной природы этой энергии. Казалось, она подтверждалась оценками состава верхней коры, которые показали весьма значительные концентрации урана, калия и других радиоактивных элементов, но впоследствии выяснилось, что содержания радиоактивных элементов в породах земной коры совершенно недостаточно для обеспечения наблюдаемого потока глубинного тепла. А содержание радиоактивных элементов в подкоровом веществе (по составу близком к базальтам океанического дна), можно сказать, ничтожно. Однако это не исключает достаточно высокого содержания тяжёлых радиоактивных элементов, генерирующих тепло, в центральных зонах планеты.

Другая модель объясняет нагрев химической дифференциацией Земли. Первоначально планета была смесью силикатного и металлического веществ. Но одновременно с образованием планеты началась её дифференциация на отдельные оболочки. Более плотная металлическая часть устремилась к центру планеты, а силикаты концентрировались в верхних оболочках. При этом потенциальная энергия системы уменьшалась и превращалась в тепловую энергию.

Другие исследователи полагают, что разогрев планеты произошёл в результате аккреции при ударах метеоритов о поверхность зарождающегося небесного тела. Это объяснение сомнительно — при аккреции тепло выделялось практически на поверхности, откуда оно легко уходило в космос, а не в центральные области Земли.

Сила вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но кроме неё на плиты действуют и другие, меньшие по величине, но также важные силы. Это — силы Архимеда, обеспечивающие плавание более лёгкой коры на поверхности более тяжёлой мантии. Приливные силы, обусловленные гравитационным воздействием Луны и Солнца (различием их гравитационного воздействия на разноудаленные от них точки Земли). Сейчас приливной «горб» на Земле, вызванный притяжением Луны в среднем около 36 см. Раньше, Луна была ближе и это имело большие масштабы, деформация мантии приводит к её нагреву. Например, вулканизм, наблюдаемый на Ио (спутник Юпитера), вызван именно этими силами — прилив на Ио около 120 м. А также силы, возникающие вследствие изменения атмосферного давления на различные участки земной поверхности — силы атмосферного давления достаточно часто изменяются на 3 %, что эквивалентно сплошному слою воды толщиной 0,3 м (или гранита толщиной не менее 10 см). Причём это изменение может происходить в зоне шириной в сотни километров, тогда как изменение приливных сил происходит более плавно — на расстояниях в тысячи километров.

Ссылки

.
.

Некоторые доказательства реальности механизма тектоники литосферных плит

Удревнение возраста океанической коры по мере удаления от осей спрединга (см. рисунок). В этом же направлении отмечается нарастание мощности и стратиграфической полноты осадочного слоя.

Рисунок  — Карта возраста пород океанического дна Северной Атлантики (по У. Питмену и М. Тальвани, 1972). Разным цветом выделены участки океанского дна различных возрастных интервалов; цифрами указан возраст в миллионах лет.

Рисунок  – Томографический профиль через Эллинский желоб, остров Крит и Эгейское море. Серые кружки – гипоцентры землетрясений. Синим цветом показана пластина погружающейся холодной мантии, красным – горячая мантия (по данным В. Спэкмена, 1989)

Остатки огромной  плиты Фаралон, исчезнувшей в зоне субдукции под Северной и Южной Америками, фиксируемые в виде слейбов «холодной» мантии (разрез поперек Сев. Америки, по S-волнам). По Grand, Van der Hilst, Widiyantoro, 1997, GSA Today, v. 7, No. 4, 1-7

Полосовые магнитные аномалии

​Линейные магнитные аномалии в океанах были обнаружены в 50-х годах при геофизическом изучении Тихого океана. Это открытие позволило в 1968 году Хессу и Дицу сформулировать теорию спрединга океанического дна, которая выросла в теорию тектоники плит. Они стали одним из самых веских доказательств правильности теории.

Рисунок  — Образование полосовых магнитных аномалий при спрединге.

Причиной происхождения полосовых магнитных аномалий является процесс рождения океанической коры в зонах спрединга срединно-океанических хребтов, излившиеся базальты при остывании ниже точки Кюри в магнитном поле Земли, приобретают остаточную намагниченность. Направление намагниченности совпадает с направлением магнитного поля Земли, однако вследствие периодических инверсий магнитного поля Земли излившиеся базальты образуют полосы с различным направлением намагниченности: прямым (совпадает с современным направлением магнитного поля) и обратным.

Рисунок — Схема образования полосовой структуры магнитоактивного слоя и магнитных аномалий океана (модель Вайна – Мэтьюза).

История теории тектоники плит

Тектоника плит — современная парадигма в науках о земле. История её появления полна драматических событий.

Когда вы идёте по земле, она кажется очень твёрдой и устойчивой, однако наша планета постоянно движется, она вращается вокруг Солнца, вращается вокруг своей оси, а еще земля, по которой мы ходим, тоже движется.

Давайте сегодня об этом и узнаем.

Начнём с того, что Земля не всегда была такой, как мы видим её сегодня. Около 300 миллионов лет назад у неё не было семь континентов, а существовал только один гигантский суперконтинент Пангея.

Постепенно Пангея распалась на Лавразию и Гондвану. Затем они тоже распались на более мелкие части и постепенно все континенты медленно переместились на свои нынешние места.

Эту идею движения континентов предложил немецкий учёный Альфред Вегенер в 1912 году и назвал ее теорией дрейфа материков. Главным доказательством своей теории он считал то, что на географических картах очертания восточного побережья Южной Америки почти точно совпадает с очертанием западного побережья Африки. Хотя и задолго до него некоторые учёные обращали внимание на такую особенность очертания береговых линий.

Однако Вегенер ещё указал на окаменелости похожих животных на разных материках, а также растений.

Они просто не могли перемещаться через огромные океаны.

Также он указал на многочисленные сходства в геологическом строении континентов, но Вегенер не смог полностью объяснить, почему именно Пангея распалась.

Поэтому позже теория континентального дрейфа была заменена теорией о тектонике плит. Это звучит сложно и сверхнаучно, но на самом деле это довольно просто.

Наша планета состоит из нескольких слоёв: земная кора, мантия, внешнее ядро и внутреннее ядро. Верхний слой, который состоит из земной коры и части верхней мантии, называется литосферой. Эта литосфера не цельная, а разбита на большие куски — тектонические плиты. Каждая плита разного размера, формы и толщины. Но вместе они складываются как пазл.

Есть семь крупных тектонических плит:

  • Тихоокеанская,
  • Северо-Американская,
  • Евразийская,
  • Африканская,
  • Антарктическая,
  • Индо-Австралийская
  • Южно-Американская.

А еще есть десятки средних плит и множество мелких литосферных плит.

В состав этих плит входят материки и прилегающие части океанов. Под литосферой находится слой горячей жидкой расплавленной породы, который называется астеносфера.

Почему он жидкий?

Потому что в недрах Земли действуют мощные силы, заставляющие мантию испытывать тепловую конвекцию. Давайте возьмём кастрюлю с супом и включим газ. Снизу суп нагревается и поднимается вверх, там остывает и снова опускается вниз. Похожий процесс управляет и мантией.

Причем он идёт непрерывно, из-за чего тектонические плиты скользят по слою мантии. В этом и есть главный смысл теории тектоники плит!

Т.е. двигаются не отдельные континенты по океану, как предполагал Вегенер, а литосферные плиты, покрывающие всю Землю, по астеносфере.

Поскольку все плиты плотно прилегают друг к другу, движение любой из них действует на окружающие плиты, заставляя и их постепенно перемещаться.

Они могут двигаться навстречу друг другу.

Здесь возможно три варианта:

Первый вариант — столкновение двух плит континентальной коры.

Поскольку обе плиты примерно одинаковой плотности, ни одна из них не хочет уступать. Поэтому они сгибаются и деформируются, образуя горы.

Например, десятки миллионов лет назад столкновение Индо-Австралийской и Евразийской плит образовало Гималаи.

Однако эти плиты до сих пор продолжают сталкиваться, поэтому Гималаи становятся выше на несколько миллиметров каждый год.

Второй вариант — столкновение океанической плиты с материковой.

Более тяжёлая океаническая плита погружается под материковую, достигает мантии и переплавляется в магму, а более лёгкая материковая плита поднимается вверх. В результате этого образуются вулканы.

Третий вариант — столкновение двух океанических плит.

Одна из плит заползает под другую. Формируются глубоководные желоба. Это длинные, узкие и очень глубокие впадины. Например, Марианская впадина — самая глубокая часть океана — образована схождением Тихоокеанской и Филиппинской плит.

Также плиты могут отдаляться друг от друга.

Это создаёт разрыв в середине, который постепенно становится огромным расколом, и позволяет магме подниматься к поверхности.

Магма застывает, образуя новую земную кору на краях плит. В результате под водой образуются горные хребты, т.е. трещины прямо посередине дна океана.

Например, Срединно-Атлантический хребет, пролегающий по Атлантическому океану, а на суше образуются рифты — крупные разломы в земной коре.

Например, Великая рифтовая долина в Африке.

Если плиты там продолжат расходиться, через миллионы лет Восточная Африка отделится от континента и сформирует новый континент.

Наконец, последний способ сдвига плит — это трансформный разлом

Когда две плиты скользят мимо друг друга в противоположных направлениях с разной скоростью. Из-за трения создаётся напряжение, которое нарастает, и происходит землетрясение.

Сегодня континенты продолжают свое движение, правда, очень медленно, так медленно, что никто на Земле не может этого почувствовать — всего на несколько сантиметров каждый год.

Примерно с такой же скоростью растут наши ногти.

Для того чтобы земная кора сместилась на значительную территорию, требуются миллионы лет.

Учёные считают, что в будущем континенты снова объединятся в суперконтинент и даже придумали ему название — Пангея Ультима.

Теория тектоники плит — одна из самых важных теорий в истории науки о Земле, потому что она даёт рассуждения о причинах землетрясений, вулканов и постоянно меняющейся поверхности нашей планеты.

Теперь и вы знаете об этой теории.

Конвергентные границы

Конвергентными называются границы, на которых происходит столкновение плит. Возможно три варианта:

В редких случаях происходит надвигание океанической коры на континентальную — обдукция. Благодаря этому процессу возникли офиолиты Кипра, Новой Каледонии, Омана и другие.

В зонах субдукции поглощается океаническая кора, и тем самым компенсируется её появление в срединно-океанических хребтах. В них происходят исключительно сложные процессы, взаимодействия коры и мантии. Так океаническая кора может затягивать в мантию блоки континентальной коры, которые по причине низкой плотности эксгумируются обратно в кору. Так возникают метаморфические комплексы сверхвысоких давлений, один из популярнейших объектов современных геологических исследований.

Большинство современных зон субдукции расположены по периферии Тихого океана, образуя тихоокеанское огненное кольцо. Процессы, идущие в зоне конвергенции плит, по праву считаются одними из самых сложных в геологии. В ней смешиваются блоки разного происхождения, образуя новую континентальную кору.

Активные континентальные окраины

Теории дрейфа континентов и литосферных плит

Активная континентальная окраина

Активная континентальная окраина возникает там, где под континент погружается океаническая кора. Эталоном этой геодинамической обстановки считается западное побережье Южной Америки, её часто называют андийским типом континентальной окраины. Для активной континентальной окраины характерны многочисленные вулканы и вообще мощный магматизм. Расплавы имеют три компонента: океаническую кору, мантию над ней и низы континентальной коры.

Под активной континентальной окраиной происходит активное механическое взаимодействие океанической и континентальной плит. В зависимости от скорости, возраста и мощности океанической коры возможны несколько сценариев равновесия. Если плита двигается медленно и имеет относительно малую мощность, то континент соскабливает с неё осадочный чехол. Осадочные породы сминаются в интенсивные складки, метаморфизуются и становятся частью континентальной коры. Образующаяся при этом структура называется аккреционным клином. Если скорость погружающейся плиты высока, а осадочный чехол тонок, то океаническая кора стирает низ континента и вовлекает его в мантию.

Теории дрейфа континентов и литосферных плит

Островные дуги — это цепочки вулканических островов над зоной субдукции, возникающие там, где океаническая плита погружается под другую океаническую плиту. В качестве типичных современных островных дуг можно назвать Алеутские, Курильские, Марианские острова, и многие другие архипелаги. Японские острова также часто называют островной дугой, но их фундамент очень древний и на самом деле они образованы несколькими разновременными комплексами островных дуг, так что Японские острова являются микроконтинентом.

Островные дуги образуются при столкновении двух океанических плит. При этом одна из плит оказывается снизу и поглощается в мантию. На верхней же плите образуются вулканы островной дуги. Выгнутая сторона островной дуги направлена в сторону поглощаемой плиты. С этой стороны находятся глубоководный желоб и преддуговый прогиб.

За островной дугой расположен задуговый бассейн (типичные примеры: Охотское море, Южно-Китайское море и т.д.) в котором также может происходить спрединг.

Теории дрейфа континентов и литосферных плит

Столкновение континентальных плит приводит к смятию коры и образованию горных цепей. Примером коллизии является Альпийско-Гималайский горный пояс, образовавшийся в результате закрытия океана Тетис и столкновения с Евразийской плитой Индостана и Африки. В результате мощность коры значительно увеличивается, под Гималаями она составляет 70 км. Это неустойчивая структура, она интенсивно разрушается поверхностной и тектонической эрозией. В коре с резко увеличенной мощностью идёт выплавка гранитов из метаморфизованных осадочных и магматических пород. Так образовались крупнейшие батолиты, напр., Ангаро-Витимский и Зерендинский.

На русском языке

  • Хаин, Виктор Ефимович Современная геология: проблемы и перспективы
  • В. П. Трубицын, В. В. Рыков. Мантийная конвекция и глобальная тектоника земли Объединённый институт физики Земли РАН, Москва
  • Причины тектонических разломов, дрейф материков и физический тепловой баланс планеты (USAP)
  • Хаин, Виктор Ефимович Тектоника плит, их структуры, движения и деформации
  • Поэтический спор о тектонике плит
  • Передача Гордона о движении континентов

На английском языке

Трансформные границы

Там, где плиты двигаются параллельным курсом, но с разной скоростью, возникают трансформные разломы — грандиозные сдвиговые нарушения, широко распространённые в океанах и редкие на континентах.

В океанах трансформные разломы идут перпендикулярно срединно-океаническим хребтам (СОХ) и разбивают их на сегменты шириной в среднем 400 км. Между сегментами хребта находится активная часть трансформного разлома. На этом участке постоянно происходят землетрясения и горообразование, вокруг разлома формируются многочисленные оперяющие структуры — надвиги, складки и грабены. В результате, в зоне разлома нередко обнажаются мантийные породы.

По обе стороны от сегментов СОХ находятся неактивные части трансформных разломов. Активных движений в них не происходит, но они чётко выражены в рельефе дна океанов линейными поднятиями с центральной депрессией.

Трансформные разломы формируют закономерную сетку и, очевидно, возникают не случайно, а в силу объективных физических причин. Совокупность данных численного моделирования, теплофизических экспериментов и геофизических наблюдений позволила выяснить, что мантийная конвекция имеет трёхмерную структуру. Кроме основного течения от СОХ, в конвективной ячейке за счёт остывания верхней части потока, возникают продольные течения. Это остывшее вещество устремляется вниз вдоль основного направления течения мантии. В зонах этого второстепенного опускающегося потока и находятся трансформные разломы. Такая модель хорошо согласуется с данными о тепловом потоке: над трансформными разломами наблюдается его понижение.

Сдвиги на континентах

Сдвиговые границы плит на континентах встречаются относительно редко. Пожалуй, единственным ныне активным примером границы такого типа является разлом Сан-Андреас, отделяющий Северо-Американскую плиту от Тихоокеанской. 800-мильный разлом Сан-Андреас — один из самых сейсмоактивных районов планеты: в год плиты смещаются относительно друг друга на 0,6 см, землетрясения с магнитудой более 6 единиц происходят в среднем раз в 22 года. Город Сан-Франциско и большая часть района бухты Сан-Франциско построены в непосредственной близости от этого разлома.

Появление теории тектоники плит

К началу 1960-х гг. была составлена рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты, которые возвышаются на 1,5—2 км над абиссальными равнинами, покрытыми осадками. Эти данные позволили Р. Дицу и Г. Хессу в 1962—1963 гг. выдвинуть гипотезу спрединга («see flow spreading» — «растекание морского дна»). Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно впаяны в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.

Внутриплитные процессы

Первые формулировки тектоники плит утверждали, что вулканизм и сейсмические явления сосредоточены по границам плит, но вскоре стало ясно, что и внутри плит идут специфические тектонические и магматические процессы, которые также были интерпретированы в рамках этой теории. Среди внутриплитных процессов особое место заняли явления долговременного базальтового магматизма в некоторых районах, так называемые горячие точки.

На дне океанов расположены многочисленные вулканические острова. Некоторые из них расположены в цепочках с последовательно изменяющимся возрастом. Классическим примером такой подводной гряды стал Гавайский подводный хребет. Он поднимается над поверхностью океана в виде Гавайских островов, от которых на северо-запад идёт цепочка подводных гор с непрерывно увеличивающимся возрастом, некоторые из которых, например, атолл Мидуэй, выходят на поверхность. На расстоянии порядка 3000 км от Гавайев цепь немного поворачивает на север и называется уже Императорским хребтом. Он прерывается в глубоководном желобе перед Алеутской островной дугой.

Для объяснения этой удивительной структуры было сделано предположение, что под Гавайскими островами находится горячая точка — место, где к поверхности поднимается горячий мантийный поток, который проплавляет двигающуюся над ним океаническую кору. Таких точек сейчас на Земле установлено множество. Мантийный поток, который их вызывает, был назван плюмом. В некоторых случаях предполагается исключительно глубокое происхождение вещества плюмов, вплоть до границы ядра — мантии.

Траппы и океанические плато

Кроме долговременных горячих точек, внутри плит иногда происходят грандиозные излияния расплавов, которые на континентах формируют траппы, а в океанах океанические плато. Особенность этого типа магматизма в том, что он происходит за короткое в геологическом смысле время — порядка нескольких миллионов лет, но захватывает огромные площади (десятки тысяч км²); при этом изливается колоссальный объём базальтов, сравнимый с их количеством, кристаллизующимся в срединно-океанических хребтах.

Известны сибирские траппы на Восточно-Сибирской платформе, траппы плоскогорья Декан на Индостанском континенте и многие другие. Причиной образования траппов также считаются горячие мантийные потоки, но в отличие от горячих точек они действуют кратковременно, и разница между ними не совсем ясна.

Горячие точки и траппы дали основания для создания так называемой плюмовой геотектоники, которая утверждает, что значительную роль в геодинамических процессах играет не только регулярная конвекция, но и плюмы. Плюмовая тектоника не противоречит тектонике плит, а дополняет её.

Теория геосинклиналей

Основой теоретической геологии начала 20-го века была контракционная гипотеза. Земля остывает подобно испеченному яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей, созданная на основании изучения складчатых сооружений. Эта теория была сформулирована Дж. Дэна, который добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах-впадинах возникают тангенциальные силы, которые давят на континенты. Последние вздымаются в горные хребты, а затем и разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Подробнее по этой теме см.: Мобилизм.

Основой теоретической геологии начала XX века была контракционная гипотеза. Земля остывает подобно испечённому яблоку, и на ней появляются морщины в виде горных хребтов. Развивала эти идеи теория геосинклиналей, созданная на основании изучения складчатых сооружений. Эта теория была сформулирована Джеймсом Даной, который добавил к контракционной гипотезе принцип изостазии. Согласно этой концепции Земля состоит из гранитов (континенты) и базальтов (океаны). При сжатии Земли в океанах-впадинах возникают тангенциальные силы, которые давят на континенты. Последние вздымаются в горные хребты, а затем разрушаются. Материал, который получается в результате разрушения, откладывается во впадинах.

Против этой схемы выступил немецкий учёный-метеоролог Альфред Вегенер. 6 января 1912 года он выступил на собрании Немецкого геологического общества с докладом о дрейфе материков. Исходной посылкой к созданию теории стало совпадение очертаний западного побережья Африки и восточного Южной Америки. Если эти континенты сдвинуть, то они совпадают, как если бы образовались в результате раскола одного праматерика.

Вегенер не удовлетворился совпадением очертаний побережий (которые неоднократно замечались до него), а стал интенсивно искать доказательства теории. Для этого он изучил геологию побережий обоих континентов и нашёл множество схожих геологических комплексов, которые совпадали при совмещении, так же, как и береговая линия. Другим направлением доказательства теории стали палеоклиматические реконструкции, палеонтологические и биогеографические аргументы. Многие животные и растения имеют ограниченные ареалы, по обе стороны Атлантического океана. Они очень схожи, но разделены многокилометровым водным пространством, и трудно предположить, что они пересекли океан.

Кроме того, Вегенер стал искать геофизические и геодезические доказательства. Однако в то время уровень этих наук был явно не достаточен, чтобы зафиксировать современное движение континентов. В 1930 году Вегенер погиб во время экспедиции в Гренландии, но перед смертью уже знал, что научное сообщество не приняло его теорию.

Изначально теория дрейфа материков было принята научным сообществом благосклонно, но в 1922 году она подверглась жёсткой критике со стороны сразу нескольких известных специалистов. Главным аргументом против теории стал вопрос о силе, которая двигает плиты. Вегенер полагал, что континенты двигаются по базальтам океанического дна, но для этого требовалось огромное усилие, и источника этой силы никто назвать не мог. В качестве источника движения плит предлагались сила Кориолиса, приливные явления и некоторые другие, однако простейшие расчёты показывали, что всех их абсолютно недостаточно для перемещения огромных континентальных блоков.

Критики теории Вегенера поставили во главу угла вопрос о силе, двигающей континенты, и проигнорировали всё множество фактов, безусловно подтверждавших теорию. По сути, они нашли единственный вопрос, в котором новая концепция была бессильна, и без конструктивной критики отвергли основные доказательства. После смерти Альфреда Вегенера теория дрейфа материков была отвергнута, получив статус маргинальной науки, и подавляющее большинство исследований продолжали проводиться в рамках теории геосинклиналей. Правда, и ей пришлось искать объяснения истории расселения животных на континентах. Для этого были придуманы сухопутные мосты, соединявшие континенты, но погрузившиеся в морскую пучину. Это было ещё одно рождение легенды об Атлантиде. Стоит отметить, что некоторые учёные не признали вердикт мировых авторитетов и продолжили поиск доказательств движения материков. Так дю Туа (Alexander du Toit) объяснял образование гималайских гор столкновением Индостана и Евразийской плиты.

Вялотекущая борьба фиксистов, как назвали сторонников отсутствия значительных горизонтальных перемещений, и мобилистов, утверждавших, что континенты всё-таки двигаются, с новой силой разгорелась в 1960-х годах, когда в результате изучения дна океанов были найдены ключи к пониманию «машины» под названием Земля.

К началу 1960-х годов была составлена карта рельефа дна Мирового океана, которая показала, что в центре океанов расположены срединно-океанические хребты, которые возвышаются на 1,5—2 км над абиссальными равнинами, покрытыми осадками. Эти данные позволили Р. Дицу и Гарри Хессу в 1962—1963 годах выдвинуть гипотезу спрединга. Согласно этой гипотезе, в мантии происходит конвекция со скоростью около 1 см/год. Восходящие ветви конвекционных ячеек выносят под срединно-океаническими хребтами мантийный материал, который обновляет океаническое дно в осевой части хребта каждые 300—400 лет. Континенты не плывут по океанической коре, а перемещаются по мантии, будучи пассивно «впаяны» в литосферные плиты. Согласно концепции спрединга, океанические бассейны структуры непостоянные, неустойчивые, континенты же — устойчивые.

Возраст дна океанов (красный цвет соответствует молодой коре)

В 1963 году гипотеза спрединга получает мощную поддержку в связи с открытием полосовых магнитных аномалий океанического дна. Они были интерпретированы как запись инверсий магнитного поля Земли, зафиксированная в намагниченности базальтов дна океана. После этого тектоника плит начала победное шествие в науках о Земле. Всё больше учёных понимали, что, чем тратить время на защиту концепции фиксизма, лучше взглянуть на планету с точки зрения новой теории и, наконец-то, начать давать реальные объяснения сложнейшим земным процессам.

Тектоника плит как система наук

Карта тектонических плит

Сейчас тектонику уже нельзя рассматривать как чисто геологическую концепцию. Она играет ключевую роль во всех науках о Земле, в ней выделилось несколько методических подходов с разными базовыми понятиями и принципами.

С точки зрения кинематического подхода, движения плит можно описать геометрическими законами перемещения фигур на сфере. Земля рассматривается как мозаика плит разного размера, перемещающихся относительно друг друга и самой планеты. Палеомагнитные данные позволяют восстановить положение магнитного полюса относительно каждой плиты на разные моменты времени. Обобщение данных по разным плитам привело к реконструкции всей последовательности относительных перемещений плит. Объединения этих данных с информацией, полученной из неподвижных горячих точек, сделало возможным определить абсолютные перемещения плит и историю движения магнитных полюсов Земли.

Теплофизический подход рассматривает Землю как тепловую машину, в которой тепловая энергия частично превращается в механическую. В рамках этого подхода движение вещества во внутренних слоях Земли моделируется как поток вязкой жидкости, описываемый уравнениями Навье — Стокса. Мантийная конвекция сопровождается фазовыми переходами и химическими реакциями, которые играют определяющую роль в структуре мантийных течений. Основываясь на данных геофизического зондирования, результатах теплофизических экспериментов и аналитических и численных расчётах, учёные пытаются детализировать структуру мантийной конвекции, найти скорости потоков и другие важные характеристики глубинных процессов. Особенно важны эти данные для понимания строения самых глубоких частей Земли — нижней мантии и ядра, которые недоступны для непосредственного изучения, но, несомненно, оказывают огромное влияние на процессы, идущие на поверхности планеты.

Геохимический подход. Для геохимии тектоника плит важна как механизм непрерывного обмена веществом и энергией между различными оболочками Земли. Для каждой геодинамической обстановки характерны специфические ассоциации горных пород. В свою очередь, по этим характерным особенностям можно определить геодинамическую обстановку, в которой образовалась порода.

Исторический подход. В смысле истории планеты Земля, тектоника плит — это история соединяющихся и раскалывающихся континентов, рождения и угасания вулканических цепей, появления и закрытия океанов и морей. Сейчас для крупных блоков коры история перемещений установлена с большой детальностью и за значительный промежуток времени, но для небольших плит методические трудности много большие. Самые сложные геодинамические процессы происходят в зонах столкновения плит, где образуются горные цепи, сложенные множеством мелких разнородных блоков — террейнов. При изучении Скалистых гор зародилось особое направление геологических исследований — террейновый анализ, который вобрал в себя комплекс методов, по выделению террейнов и реконструкции их истории.

Тектоника плит на других планетах

В настоящее время нет подтверждений современной тектоники плит на других планетах Солнечной системы. Исследования магнитного поля Марса, проведённые в 1999 космической станцией Mars Global Surveyor, указывают на возможность тектоники плит на Марсе в прошлом.

Некоторые процессы ледяной тектоники на Европе аналогичны процессам, происходящим на Земле.

Когда началась тектоника плит на Земле

Теории дрейфа континентов и литосферных плит

Подробнее по этой теме см.: История перемещения плит.

Восстановление прошлых перемещений плит — один из основных предметов геологических исследований. С различной степенью детальности положение континентов и блоков, из которых они сформировались, реконструировано вплоть до архея.

Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400—600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору — суперконтинент. Современные континенты образовались 200—150 млн лет назад, в результате раскола суперконтинента Пангеи. Сейчас континенты находятся на этапе почти максимального разъединения. Атлантический океан расширяется, а Тихий океан закрывается. Индостан движется на север и сминает Евразийскую плиту, но, видимо, ресурс этого движения уже почти исчерпан, и в скором геологическом времени в Индийском океане возникнет новая зона субдукции, в которой океаническая кора Индийского океана будет поглощаться под Индийский континент.

Влияние перемещений плит на климат

Расположение больших континентальных массивов в приполярных областях способствует общему понижению температуры планеты, так как на континентах могут образовываться покровные оледенения. Чем шире развито оледенение, тем больше альбедо планеты и тем ниже среднегодовая температура.

Кроме того, взаимное расположение континентов определяет океаническую и атмосферную циркуляцию.

Однако простая и логичная схема: континенты в приполярных областях — оледенение, континенты в экваториальных областях — повышение температуры, оказывается неверной при сопоставлении с геологическими данными о прошлом Земли. Четвертичное оледенение действительно произошло, когда в районе Южного полюса оказалась Антарктида, и в северном полушарии Евразия и Северная Америка приблизились к Северному полюсу. С другой стороны, сильнейшее протерозойское оледенение, во время которого Земля оказалась почти полностью покрыта льдом, произошло тогда, когда большая часть континентальных массивов находилась в экваториальной области.

Кроме того, существенные изменения положения континентов происходят за время порядка десятков миллионов лет, в то время как, суммарная продолжительность ледниковых эпох составляет порядка нескольких миллионов лет, и во время одной ледниковой эпохи происходят циклические смены оледенений и межледниковых периодов. Все эти климатические изменения происходят быстро по сравнению со скоростями перемещения континентов, и поэтому движение плит не может быть их причиной.

Из вышесказанного следует, что перемещения плит не играют определяющей роли в климатических изменениях, но могут быть важным дополнительным фактором, «подталкивающим» их.

Значение тектоники плит

Тектоника плит сыграла в науках о Земле роль, сравнимую с гелиоцентрической концепцией в астрономии, или открытием ДНК в генетике. До принятия теории тектоники плит, науки о Земле носили описательный характер. Они достигли высокого уровня совершенства в описании природных объектов, но редко могли объяснить причины процессов. В разных разделах геологии могли доминировать противоположные концепции. Тектоника плит связала различные науки о Земле, дала им предсказательную силу.

Оцените статью
Землетрясения