Три основных типа границ литосферных плит. 1. Основные границы плиты


Текст работы размещён без изображений и формул.

Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Литосфера Земли не является сплошной оболочкой. Она разделена на небольшое число относительно тонких жестких плит, движущихся по поверхности планеты под воздействием конвективных течений в ее мантийной оболочке и взаимодействующих друг с другом своими краевыми частями.

Скорости перемещения литосферных плит по порядку величины составляют несколько сантиметров в год. Хотя эти скорости кажутся незначительными, большая часть всех происходящих на планете землетрясений, вулканических извержений и горообразовательных процессов происходит именно в области межплитовых границ. Соответственно именно современная сейсмическая и вулканическая активность является основным критерием выделения границ литосферных плит.

На рис. 1 показана одна из существующих схем разделения литосферы Земли на жесткие плиты. По характеру взаимодействия смежных плит границы между ними могут относиться к одному из трех типов – дивергентному, конвергентному или трансформному.

Там, где литосферные плиты расходятся, освобождающееся между ними пространство заполняется поднимающимся снизу веществом астеносферы и его выплавками. Такие границы называются дивергентными. В океанах им соответствуют срединноокеанские хребты с рифтовыми зонами на гребнях. Если дивергентная граница пересекает материк, то над ней возникает континентальная (материковая) рифтовая зона.

В геологической литературе дивергентные границы плит часто называют конструктивными, поскольку на них идет наращивание океанской коры, а конвергентные – деструктивными, поскольку на них, напротив, океанская кора (и литосфера в целом) погружается в мантию на переплавку. Однако данные термины не слишком удачны. Действительно, хотя на дивергентных границах океанская кора наращивается, этому неизбежно предшествует деструкция континентальной коры (именно такой процесс идет в материковых рифтовых зонах, которые также относятся к дивергентным межплитовым границам). Напротив, на конвергентных границах океанская литосфера уничтожается, но за счет ее переплавления в мантии рождается континентальная кора. По указанным причинам предпочтительно употреблять термины дивергентные и конвергентные границы, отражающие лишь направление движения смежных плит, а не процессы, происходящие на межплитовых границах.

Землетрясения:  Прогнозы землетрясений: когда будет трястись земля?

Третий и последний тип границ литосферных плит – трансформный. На трансформных границах не происходит ни наращивания, ни поглощения литосферы, плиты просто скользят друг относительно друга. Свое название они получили из-за того, что, как правило, соединяют (трансформируют) границы других типов – чаще всего дивергентные, реже конвергентные или дивергентные с конвергентными.

Рис. 1. Литосферные плиты Земли.

1 – дивергентные границы (а – срединно-океанские хребты, б – континентальные рифты); 2 – трансформные границы; 3 – конвергентные границы (а – островодужные, б – активные континентальные окраины, в – коллизионные); 4 – направления и скорости (см/год) движения плит.

Существуют более генерализованные модели с меньшим, чем 13, числом выделяемых литосферных плит. Дело в том, что сейсмичность, магматизм и скорость взаимодействия плит на разных границах имеют различную интенсивность. Четкие критерии того, насколько значимым должен быть каждый из перечисленных показателей, чтобы проводить межплитовую границу, отсутствуют. Например, раздвиговые движения по дивергентной границе, разделяющей Африканскую и Сомалийскую плиты (Восточно-Африканской рифтовой системе), относительно мало интенсивны, поэтому часто связанную с этой границей тектоно-магматическую активность рассматривают как внутриплитовую и, следовательно, отдельную Сомалийскую плиту не выделяют, считая ее частью Африканской (см. рис. 1).

По другой версии существует 7 крупных литосферных плит и около 10 плит меньшего размера (см. рис. 2).

Рис. 2. Тектоническая карта. Движение плит

Когда литосферные плиты в одном месте расходятся, то в другом месте их противоположные края сталкиваются с другими литосферными плитами. Более тонкая океаническая литосферная плита “подныривает” под мощную материковую литосферную плиту, создавая на поверхности глубокую впадину или жёлоб.

Так ряд ученых считают, что более 90 % поверхности Земли покрыто 14-ю крупнейшими литосферными плитами: Австралийская плита, Антарктическая плита, Аравийский субконтинент, Африканская плита, Евразийская плита, Индостанская плита, Плита Кокос, Плита Наска, Тихоокеанская плита, Плита Скотия, Северо-Американская плита, Сомалийская плита, Южно-Американская плита, Филиппинская плита.

Плиты среднего размера: Адриатическая плита, Алашаньская плита, Амурская плита, Анатолийская плита, Афганская плита, Бирманская плита, Галапагосская плита, Гренландская плита, Джунгарская плита, Зондская плита, Индокитайская плита, Индонезийская плита, Иранская плита, Карибская плита, Каролинская плита, Китайская плита, Мадагаскарская плита, Марианская плита, Монгольская, Новогебридская плита, Окинавская плита, Ордосская плита, Охотская плита, Памирская плита, Панонская плита, Плита Альтиплано, Плита Вудларк, Плита Горда, Плита Исследователя, Плита Кермандек, Плита Манус, Плита Маоке, Плита Ривера, Плита Соломонова моря, Плита Тонга, Плита Хуан де Фука, Североандская плита, Сейшельская плита, Таджикская плита, Таримская плита, Тибетская плита,Тиморская плита, Тянь-Шанская плита, Ферганская плита, Эгейская плита, Южно-Китайская плита.

Рис. 3. Литосферные плиты

Однако такой подход с геодинамической точки зрения часто не оправдан по двум причинам. Во-первых, в случае с микроплитами нет уверенности, что их деление осуществляется на уровне литосферы, а не на уровне, например, коры или даже верхней части коры. В этом случае пропадает одно из важнейших условий, придающих строгость тектонике плит – постулат о жесткости (монолитности) литосферы. Во-вторых, даже если допустить делимость микроплит на уровне литосферы, то механизм перемещений и взаимодействий крупных и средних литосферных плит с поперечными размерами, на порядок превышающими мощность, и микроплит, у которых поперечные размеры и мощность сопоставимы, оказывается существенно различным.

Существует еще одно предположение что, основными, наиболее крупными и стабильными участками земной поверхности являются восемь литосферных плит:

Индо-Австралийская плита – на ней находится Австралия и окружающая её часть океана, доходящая до полуострова Индостан. В настоящее время отмечено движение данной литосферной плиты к востоку с севера со скоростью 67 миллиметров в год;

Антарктическая плита – занимает южную часть планеты, на ней находится Антарктида и примыкающие к ней участки океанической коры. Данная плита является относительно стабильной, так как окружена срединно-океаническими хребтами, а другие литосферные плиты удаляются от неё;

Африканская плита – на ней находится Африканский континент, а также участок океанической коры, занимающий часть дна Индийского и Атлантического океанов. При этом в северо-восточной своей части эта плита фактически раскалывается – почти отдельную плиту уже составляет территория Аравийского полуострова. Соседние с Африканской плитой литосферные плиты удаляются от неё, сама же она в северной части погружается в мантию со скоростью 27 миллиметров в год;

Евразийская плита – на ней находится основная территория Евразийского континента, к этой плите не относятся полуостров Индостан, Аравийский полуостров и северо-восточный «угол» континента. Наиболее крупная по содержанию континентальной коры литосферная плита на Земле;

Индийская плита – на ней находится полуостров Индостан, данная плита средних размеров примерно 90 миллионов лет назад начала двигаться от Мадагаскара на север со скоростью 200 миллиметров в год (такая высокая скорость обусловлена меньшей толщиной плиты), а около 50 миллионов лет назад начался процесс её столкновения с Евразийской плитой. В результате столкновения появились Тибетское нагорье и Гималаи. Индийская плита продолжает движение на северо-восток со скоростью 50 миллиметров в год, тогда как Евразийская плита «убегает» от неё на север лишь со скоростью 20 миллиметров в год. К тому же у Индийской плиты есть три зоны субдукции: в одной она погружается в мантию со скоростью 55 миллиметров в год, в другой — со скоростью 67 миллиметров в год, в третьей — со скоростью 87 миллиметров в год;

Тихоокеанская плита — на ней находится участок океанической коры, составляющей дно Тихого океана. В районе Калифорнии плита движется на север со скоростью 55 миллиметров в год. При этом размеры Тихоокеанской плиты постоянно сокращаются за счёт того, что у неё существует сразу несколько зон субдукции: под Евразийскую плиту она погружается в мантию со скоростью 75 миллиметров в год; под Индийскую — со скоростью 82 миллиметра в год; под Северо-Американскую — со скоростью 35 миллиметров в год; под средних размеров Филиппинскую литосферную плиту — со скоростью 12 миллиметров в год;

Северо-Американская плита — на ней находится Североамериканский континент, северо-западная часть Атлантического океана, примерно половина Северного Ледовитого океана и северо-восточный «угол» Евразии;

Южно-Американская плита — на ней находятся Южная Америка и часть дна Атлантического океана, образовалась около 70 миллионов лет назад в результате раскола древнего суперконтинента Гондваны. Имеет зону субдукции, в которых кора погружается в мантию со скоростью 19 миллиметров в год и 5 миллиметров в год.

Следует иметь в виду, что понятие “литосферная плита” ни в коем случае не тождественно понятию “материк”, даже если первая и второй имеют одинаковые названия. Как видно на рис. 1, почти все литосферные плиты имеют смешанный тип и включают в себя как континентальную, так и океанскую части.

Есть даже плита (Индийская), захватывающая сразу два материка – частично Евразию (Индостан) и целиком Австралию. Можно назвать лишь три почти чисто океанских плиты – самую крупную литосферную плиту Земли Тихоокеанскую и две более мелких – Кокос и Наска. Есть одна почти чисто континентальная плита – Аравийская. Все остальные литосферные плиты Земли, как уже говорилось, имеют смешанный тип.

Россия расположена на четырех литосферных плитах.

  • Евроазиатская плита – большая часть западной и северной части страны,

  • Северо-Американская плита – северо-восточная часть России,

  • Амурская литосферная плита – юг Сибири,

  • Охотоморская плита – Охотское море и его побережье.

Рис. 4. Карта литосферных плит России

В строении литосферных плит выделяются относительно ровные древние платформы и подвижные складчатые пояса. На стабильных участках платформ расположены равнины, а в области складчатых поясов находятся горные хребты.

Россия расположена на двух древних платформах (Восточно-Европейской и Сибирской). В пределах платформ выделяются плиты и щиты. Плита – это участок земной коры, складчатая основа которой покрыта слоем осадочных пород. Щиты, в противоположность плитам, имеют очень мало осадочных отложений и только тонкий слой почвы.

На территории России располагаются крупнейшие в мире равнины: Восточно-Европейская и Западно-Сибирская, которые разделяются складчатыми Уральскими горами. На юго-западе – обширная Прикаспийская низменность, наиболее низкие ее части находятся ниже уровня Мирового океана на -28м, а Западно-Сибирская, Печерская и Причерноморская низменности поднимаются над его уровнем не более 100-200 м. Большая часть территории России представляет собой амфитеатр, наклоненный к северу. Вдоль южных границ страны протягивается пояс высоких гор Кавказа, Алтая, Саян. Примыкающие к ним равнины и имеют отчетливо выраженный наклон к северу. На севере и северо-востоке, вдоль побережья морей Северного Ледовитого океана располагаются: Северо-Сибирская низменность, а также Яно-Индигирская и Колымская низменности. Высотные их отметки изменяются в пределах 40-50 и до 100 м. Почти половина территории России, лежащая восточнее Енисея, занята горными сооружениями, обширными и невысокими плоскогорьями и межгорными понижениями. Восточнее Енисея простирается Среднесибирское плоскогорье (в пределах плато Путорана), достигающее высоты 1701 м. С юга к плоскогорью примыкают горы Алтая (г. Белуха, 4506 м), Саян, Прибайкалья и Забайкалья, Становое нагорье. Высотные отметки достигают: 2930 м (Западный Саян); 3491 м — г. Мунку-Сардык. На юго-востоке, за горами Забайкалья — Зейско-Буреинская и Нижне-Амурская равнины, которые отделяют хребты Алданского нагорья от хребтов Сихотэ-Алиня. Крайний северо-восток большей частью горист (горы Верхоянские, Черского, Колымские, Чукотские), а крайний восток представлен гористым полуостровом Камчатка (наиболее высокий действующий вулкан – Ключевская сопка – 4750 м), Курильскими островами и островом Сахалин.

Вдоль берегов Северного Ледовитого океана располагаются возвышенные или гористые острова: Врангеля, Новосибирские и Ляховские, Северной Земли, Земли Франца-Иосифа. Севернее Северо-Сибирской низменности, в пределах Таймырского полуострова простираются горы Бырранга с вершиной Ледниковая в 1146 м.

  1. Аплонов С. В. А76 Геодинамика: Учебник. – СПб.: Изд-во С.-Петерб. ун-та, 2001. – 360 с.;

  2. «Вестник Краунц. Науки о земле». 2008 №1. Выпуск №11. « Блоковая структура и геодинамика континентальной литосферы на границах плит». Ю.Г. Гатинский, Д. В. Рундквист, Г. Л. Владова, Т. В. Прохорова, Т. В. Романюк, 2008.;

  3. Курошев Г. Д. К93 Космическая геодезия и глобальные системы позиционирования. Учебное пособие. – СПб.: Изд-во С.-Петерб. Ун-та, 2011, — 182 с.;

Дивергентные границы – границы, вдоль которых происходит раздвижение плит.

Три основных типа границ литосферных плит. 1. Основные границы плиты

Процессы горизонтального растяжения литосферы называют рифтогенезом. Эти границы приурочены к континентальным рифтам и срединно-океанических хребтам в океанических бассейнах.

Термин «рифт» (от англ. rift – разрыв, трещина, щель) применяется к крупным линейным структурам глубинного происхождения, образованным в ходе растяжения земной коры. В плане строения они представляют собой грабенообразные структуры.

Закладываться рифты могут и на континентальной, и на океанической коре, образуя единую глобальную систему, ориентированную относительно оси геоида. При этом эволюция континентальных рифтов может привести к разрыву сплошности континентальной коры и превращению этого рифта в рифт океанический (если расширение рифта прекращается до стадии разрыва континентальной коры, он заполняется осадками, превращаясь в авлакоген).

Строение континентального рифта

Три основных типа границ литосферных плит. 1. Основные границы плиты

Процесс раздвижения плит в зонах океанских рифтов (срединно-океанических хребтов) сопровождается образованием новой океанической коры за счёт магматических базальтовых расплав поступающих из астеносферы. Такой процесс образования новой океанической коры за счёт поступления мантийного вещества называется спрединг
(от англ. spread – расстилать, развёртывать)
.

Строение срединно-океанического хребта

Три основных типа границ литосферных плит. 1. Основные границы плиты

В ходе спрединга каждый импульс растяжения сопровождается поступлением новой порции мантийных расплавов, которые, застывая, наращивают края расходящихся от оси СОХ плит.

Именно в этих зонах происходит формирование молодой океанической коры.

Конвергентные границы
– границы, вдоль которых происходит столкновение плит. Главных вариантов взаимодействия при столкновении может быть три: «океаническая – океаническая», «океаническая – континентальная» и «континентальная — континентальная» литосфера. В зависимости от характера сталкивающихся плит, может протекать несколько различных процессов.

Субдукция
– процесс поддвига океанской плиты под континентальную или другую океаническую. Зоны субдукции приурочены к осевым частям глубоководных желобов, сопряжённых с островными дугами (являющихся элементами активных окраин). На субдукционные границы приходится около 80% протяжённости всех конвергентных границ.

При столкновении континентальной и океанической плит естественным явлением является поддвиг океанической (более тяжёлой) под край континентальной; при столкновении двух океанических погружается более древняя (то есть более остывшая и плотная) из них.

Зоны субдукции имеют характерное строение: их типичными элементами служат глубоководный желоб – вулканическая островная дуга – задуговый бассейн. Глубоководный желоб образуется в зоне изгиба и поддвига субдуцирующей плиты. По мере погружения эта плита начинает терять воду (находящуюся в изобилии в составе осадков и минералов), последняя, как известно, значительно снижает температуру плавления пород, что приводит к образованию очагов плавления, питающих вулканы островных дуг. В тылу вулканической дуги обычно происходит некоторое растяжение, определяющее образование задугового бассейна. В зоне задугового бассейна растяжение может быть столь значительным, что приводит к разрыву коры плиты и раскрытию бассейна с океанической корой (так называемый процесс задугового спрединга).

Модель процесса субдукции

Три основных типа границ литосферных плит. 1. Основные границы плиты

Погружение субдуцирующей плиты в мантию трассируется очагами землетрясений, возникающих на контакте плит и внутри субдуцирующей плиты (более холодной и вследствие этого более хрупкой, чем окружающие мантийные породы). Эта сейсмофокальная зона получила название зона Беньофа-Заварицкого
.

В зонах субдукции начинается процесс формирования новой континентальной коры.

Значительно более редким процессом взаимодействия континентальной и океанской плит служит процесс обдукции
– надвигания части океанической литосферы на край континентальной плиты. Следует подчеркнуть, что в ходе этого процесса происходит расслоение океанской плиты, и надвигается лишь её верхняя часть – кора и несколько километров верхней мантии.

При столкновении континентальных плит, кора которых более лёгкая, чем вещество мантии, и вследствие этого не способна в неё погрузиться, протекает процесс коллизии
. В ходе коллизии края сталкивающихся континентальных плит дробятся, сминаются, формируются системы крупных надвигов, что приводит к росту горных сооружений со сложным складчато-надвиговым строением. Классическим примером такого процесса служит столкновение Индостанской плиты с Евразийской, сопровождающееся ростом грандиозных горных систем Гималаев и Тибета.

Модель процесса коллизии

Три основных типа границ литосферных плит. 1. Основные границы плиты

Процесс коллизии сменяет процесс субдукции, завершая закрытие океанического бассейна. При этом в начале коллизионного процесса, когда края континентов уже сблизились, коллизия сочетается с процессом субдукции (продолжается погружение под край континента остатков океанической коры).

Для коллизионных процессов типичны масштабный региональный метаморфизм и интрузивный гранитоидный магматизм. Эти процессы приводят к созданию новой континентальной коры (с её типичным гранито-гнейсовым слоем).

Трансформные границы
– границы, вдоль которых происходят сдвиговые смещения плит.

Три основных типа границ литосферных плит. 1. Основные границы плиты

Рисунок — Границы литосферных плит Земли.

1 –
дивергентные границы ( а –
срединно-океанские хребты, б –
континентальные рифты); 2 –
трансформные границы; 3 –
конвергентные границы ( а –
островодужные, б –
активные континентальные окраины, в –
коллизионные); 4 –
направления и скорости (см/год) движения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга.
Это положении подчёркивает мнение о постоянстве объёма Земли. Но такое мнение не является единственным и окончательно доказанным. Не исключено, что объём планы меняется пульсационно, или происходит уменьшение его уменьшение за счёт охлаждения.

5. Основной причиной движения плит служит мантийная конвекция
, обусловленная мантийными теплогравитационными течениями.

Источником энергии для этих течений служит разность температуры центральных областей Земли и температуры близповерхностных её частей. При этом основная часть эндогенного тепла выделяется на границе ядра и мантии в ходе процесса глубинной дифференциации, определяющего распад первичного хондритового вещества, в ходе которого металлическая часть устремляется к центру, наращивая ядро планеты, а силикатная часть концентрируются в мантии, где далее подвергается дифференциации.

Нагретые в центральных зонах Земли породы расширяются, плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла в близповерхностных зонах. Этот процесс переноса тепла идёт непрерывно, в результате чего возникают упорядоченные замкнутые конвективные ячейки. При этом в верхней части ячейки течение вещества происходит почти в горизонтальной плоскости, и именно эта часть течения определяет горизонтальное перемещение вещества астеносферы и расположенных на ней плит. В целом, восходящие ветви конвективных ячей располагаются под зонами дивергентных границ (СОХ и континентальными рифтами), нисходящие – под зонами конвергентных границ.

Таким образом, основная причина движения литосферных плит – «волочение» конвективными течениями.

Кроме того, на плиты действуют ещё рад факторов. В частности, поверхность астеносферы оказывается несколько приподнятой над зонами восходящих ветвей и более опущенной в зонах погружения, что определяет гравитационное «соскальзывание» литосферной плиты, находящейся на наклонной пластичной поверхности. Дополнительно действуют процессы затягивания тяжёлой холодной океанской литосферы в зонах субдукции в горячую, и как следствие менее плотную, астеносферу, а также гидравлического расклинивания базальтами в зонах СОХ.

Три основных типа границ литосферных плит. 1. Основные границы плиты

Рисунок — Силы, действующие на литосферные плиты.

К подошве внутриплитовых частей литосферы приложены главные движущие силы тектоники плит – силы мантийного “волочения” (англ. drag) FDO под океанами и FDC под континентами, величина которых зависит в первую очередь от скорости астеносферного течения, а последняя определяется вязкостью и мощностью астеносферного слоя. Так как под континентами мощность астеносферы значительно меньше, а вязкость значительно больше, чем под океанами, величина силы FDC
почти на порядок уступает величине FDO
. Под континентами, особенно их древними частями (материковыми щитами), астеносфера почти выклинивается, поэтому континенты как бы оказываются “сидящими на мели”. Поскольку большинство литосферных плит современной Земли включают в себя как океанскую, так и континентальную части, следует ожидать, что присутствие в составе плиты континента в общем случае должно “тормозить” движение всей плиты. Так оно и происходит в действительности (быстрее всего движутся почти чисто океанские плиты Тихоокеанская, Кокос и Наска; медленнее всего – Евразийская, Северо-Американская, Южно-Американская, Антарктическая и Африканская, значительную часть площади которых занимают континенты). Наконец, на конвергентных границах плит, где тяжелые и холодные края литосферных плит (слэбы) погружаются в мантию, их отрицательная плавучесть создает силу FNB
(индекс в обозначении силы – от английского negative buoyance
). Действие последней приводит к тому, что субдуцирующая часть плиты тонет в астеносфере и тянет за собой всю плиту, увеличивая тем самым скорость ее движения. Очевидно, сила FNB
действует эпизодически и только в определенных геодинамических обстановках, например в случаях описанного выше обрушения слэбов через раздел 670 км.

Таким образом, механизмы, приводящие в движение литосферные плиты, могут быть условно отнесены к следующим двум группам: 1) связанные с силами мантийного “волочения” ( mantle drag mechanism
), приложенными к любым точкам подошвы плит, на рис. 2.5.5 – силы FDO
и FDC
; 2) связанные с силами, приложенными к краям плит ( edge-force mechanism
), на рисунке – силы FRP
и FNB
. Роль того или иного движущего механизма, а также тех или иных сил оценивается индивидуально для каждой литосферной плиты.

Совокупность этих процессов отражает общий геодинамический процесс, охватывающих области от поверхностных до глубинных зон Земли.

Три основных типа границ литосферных плит. 1. Основные границы плиты

Рисунок — Принципиальная схема мантийной конвекции.

Три основных типа границ литосферных плит. 1. Основные границы плиты

Рисунок — Альтернативные схемы мантийной конвекции

В настоящее время в мантии Земли развивается двухъячейковая мантийная конвекция с закрытыми ячейками (согласно модели сквозьмантийной конвекции) или раздельная конвекция в верхней и нижней мантии с накоплением слэбов под зонами субдукции (согласно двухъярусной модели). Вероятные полюсы подъема мантийного вещества расположены в северо-восточной Африке (примерно под зоной сочленения Африканской, Сомалийской и Аравийской плит) и в районе острова Пасхи (под срединным хребтом Тихого океана – Восточно-Тихоокеанским поднятием).

Экватор опускания мантийного вещества проходит примерно по непрерывной цепи конвергентных границ плит по периферии Тихого и восточной части Индийского океанов.

Современный режим мантийной конвекции, начавшийся примерно 200 млн. лет назад распадом Пангеи и породивший современные океаны, в будущем сменится на одноячейковый режим (по модели сквозьмантийной конвекции) или (по альтернативной модели) конвекция станет сквозьмантийной за счет обрушения слэбов через раздел 670 км. Это, возможно, приведет к столкновению материков и формированию нового суперконтинента, пятого по счету в истории Земли.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера.
Теорема вращения Эйлера утверждает, что любое вращение трёхмерного пространства имеет ось. Таким образом, вращение может быть описана тремя параметрами: координаты оси вращения (например, её широта и долгота) и угол поворота. На основании этого положения может быть реконструировано положение континентов в прошлые геологические эпохи. Анализ перемещений континентов привёл к выводу, что каждые 400-600 млн. лет они объединяются в единый суперконтинент, подвергающийся в дальнейшем распаду. В результате раскола такого суперконтинента Пангеи, произошедшего 200-150 млн. лет назад, и образовались современные континенты.

Вопрос №3. Геодинамические процессы. Геологические нарушения

Решающий вклад в современную геологическую теорию тектоники литосферных плит внесли следующие открытия: 1) установление грандиозной, около 60 тыс. км системы срединно-океанических хребтов и гигантских разломов, пересекающих эти хребты; 2) обнаружение и расшифровка линейных магнитных аномалий океанического дна, дающих возможность объяснить механизм и время его образования; 3) установление места и глубин гипоцентров (очагов) землетрясений и решение их фокальных механизмов, т.е. определение ориентировки напряжений в очагах; 4) развитие палеомагнитного метода, основанного на изучении древней намагниченности горных пород, что дало возможность установить перемещение континентов относительно магнитных полюсов Земли.

Литосферная плита — это крупный стабильный участок земной коры, часть литосферы. Согласно теории тектоники плит, литосферные плиты ограничены зонами сейсмической, вулканической и тектонической активности — границами плиты. Границы плит бывают трёх типов: дивергентные, конвергентные и трансформные
.

В одной точке могут сходиться только три плиты. Конфигурация, в которой в одной точке сходятся четыре или более плит, неустойчива, и быстро разрушается со временем.

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой (пример — крупнейшая тихоокеанская плита), другие состоят из блока континентальной коры, впаянного в кору океаническую.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра. С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Очертания плит меняются со временем. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций.

Более 90 % поверхности Земли покрыто 14-ю крупнейшими литосферными плитами.

Основная идея новой теории базировалась на признании разделения литосферы, т.е. верхней оболочки Земли, включающую земную кору и верхнюю мантию до астеносферы, на 7 самостоятельных крупных плит, не считая ряда мелких.

Эти плиты в своих центральных частях лишены сейсмичности, они тектонически стабильны, а вот по краям плит сейсмичность очень высокая, там постоянно происходят землетрясения. Следовательно, краевые зоны плит испытывают большие напряжения, т.к. перемещаются относительно друг друга.

Основные литосферные плиты (по В. Е. Хаину и М. Г. Ломизе): 1 – оси спрединга (дивергентные границы), 2 – зоны субдукции (конвергентные границы), 3 – трансформные разломы, 4 – векторы «абсолютных» движений литосферных плит. Малые плиты: Х – Хуан-де-Фука; Ко – Кокос; К – Карибская; А – Аравийская; Кт – Китайская; И – Индокитайская; О – Охотская; Ф – Филиппинская

Определив характер напряжений в очагах землетрясений на краях плит, удалось выяснить, что в одних случаях это растяжение, т.е. плиты расходятся и происходит это вдоль оси срединно-океанических хребтов, где развиты глубокие ущелья – рифты (англ. «рифт» – расщелина). Подобные границы, маркирующие зоны расхождения литосферных плит называются дивергентными
(англ. дивергенс – расхождение).

Оболочное строение Земли

Современные сейсмичность, вулканизм и границы плит

Типы границ литосферных плит:
1

– дивергентные границы. Раскрытие океанских рифтов, вызывающих процесс спрединга: М – поверхность Мохоровичича, Л – литосфера;
2

– конвергентные границы. Субдуция (погружение) океанической коры под континентальную: тонкими стрелками показан механизм растяжения – сжатия в гипоцентрах землетрясений (звездочки); П – первичные магматические очаги; 3 – трансформные границы; 4 – коллизионные границы.

Конвергентные (субдукционные) границы: взаимодействие океанской плиты с континентальной и взаимодействие океанских плит

Надвигание океанской плиты на континентальную – обдукция

Конвергентные границы (столкновение и взаимодействие континентальных плит)

Расположение осевых частей срединно-океанских хребтов. Являются основными дивергентными границами

Границы плит, направления и скорости перемещения плит, центры современной сейсмической и вулканической активности

Кинематика литосферных плит

На других границах плит в очагах землетрясений, наоборот, выявлена обстановка тектонического сжатия, т.е. в этих местах литосферные плиты движутся навстречу друг другу со скоростью, достигающей 10-12 см/год. Такие границы получили название конвергентных
(англ. конвергенс – схождение), а их протяженность также близка к 60 тыс. км.

Существует еще один тип границ литосферных плит, где они смещаются горизонтально относительно друг друга, как бы сдвигаются, о чем говорит и обстановка скалывания в очагах землетрясений в этих зонах. Они получили название трансформных разломов
(англ. трансформ – преобразовывать), т.к. передают, преобразуют движения от одной зоны к другой.

Некоторые литосферные плиты сложены как океанической, так и континентальной корой одновременно. Например, Южно-Американская единая плита состоит из океанической коры западной части южной Атлантики и из континентальной коры Южно-Американского континента. Только одна, Тихоокеанская плита целиком состоит из коры океанического типа.

Современными геодезическими методами, включая космическую геодезию, высокоточные лазерные измерения и другими способами установлены скорости движения литосферных плит и доказано, что океанические плиты движутся быстрее тех, в структуру которых входит континент, причём, чем толще континентальная литосфера, тем скорость движения плиты ниже.

Общепринятой точкой зрения перемещения литосферных плит считается признание конвективного переноса вещества мантии. Поверхностным выражением такого явления являются рифтовые зоны срединно-океанических хребтов, где относительно более нагретая мантия поднимается к поверхности, подвергается плавлению и магма изливается в виде базальтовых лав в рифтовой зоне и застывает.

Происхождение полосовых магнитных аномалий в океанах. А и В – время нормальной, Б – время обратной намагниченности пород: 1 – океаническая кора, 2 – верхняя мантия, 3 – рифтовая долина по оси срединно-океанического хребта, 4 – магма, 5 – полоса нормально и 6 – обратно намагниченных пород

Далее в эти застывшие породы вновь внедряется базальтовая магма и раздвигает в обе стороны более древние базальты. И так происходит много раз. При этом океаническое дно как бы наращивается, разрастается. Подобный процесс получил название спрединга
(англ. спрединг – развертывание, расстилание). Таким образом, спрединг имеет скорость, измеряемую по обе стороны осевого рифта срединно-океанического хребта.

Скорость разрастания океанического дна колеблется от нескольких мм до 18 см в год. Строго симметрично по обе стороны срединно-океанических хребтов во всех океанах расположены линейные магнитные положительные и отрицательные аномалии. Везде мы видим одну и туже последовательность аномалий, в каждом месте они узнаются, всем им присвоен свой порядковый номер.

Иными словами, по обе стороны срединно-океанического хребта мы имеем две одинаковые «записи» изменения магнитного поля на протяжении длительного времени. Нижний предел этой «записи» – 180 млн. лет. Древнее океанической коры не существует. Подобный процесс и есть спрединг.

Таким образом и происходит наращивание океанической литосферы по обе стороны хребта, по мере удаления от которого она становится холоднее и тяжелее и постепенно опускается, продавливая астеносферу.

Край плиты, под которую субдуцирует океаническая, подрезает осадки, скопившиеся на ней, как нож скрепера или бульдозера, деформирует эти отложения и приращивает их к континентальной плите в виде аккреционного клина
(англ. аккрешион – приращение). Вместе с тем какая-то часть осадочных отложений, погружается вместе с плитой в глубины мантии.

В различных местах этот процесс идёт разными путями. Так, у побережья Центральной Америки, где пробурены скважины, почти все осадки пододвигаются под континентальный край, чему способствует сверхвысокое давление воды, содержащейся в порах осадков. Поэтому и трение очень мало. В ряде других мест погружающаяся океаническая литосферная плита разрушает, эродирует край континентальной литосферы и увлекает за собой вглубь её фрагменты.

Также следует упомянуть о столкновении или коллизии
двух континентальных плит, которые в силу относительной легкости слагающего их материала, не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением. Так, например, возникли Гималайские горы, когда 50 млн. лет назад Индостанская плита столкнулась с Азиатской.

Так сформировался Альпийский горно-складчатый пояс при коллизии Африкано-Аравийской и Евразийской континентальных плит.

Относительные движения литосферных плит и распределение скоростей спрединга в рифтовых зонах СОХ (см/год): 1 – дивергентные и трансформные границы плит; 2 – планетарные пояса сжатия; 3 – конвергентные границы плит

Рассчитанные абсолютные и относительные движения литосферных плит с момента начала распада Пангеи, т.е. со 180 млн. лет назад, хорошо известны и отличаются большой точностью.

Воссоздана картина раскрытия Атлантического и Индийского океанов, которое продолжается и в наши дни со скоростью около 2,0 см в год. Выяснена возможность некоторого проворачивания литосферы Земли по отношению к нижней мантии в западном направлении, что позволяет объяснить, почему на западной и восточной активных окраинах Тихого океана условия субдукции неодинаковы и возникает известная асимметрия Тихого океана с задуговыми, окраинными морями и цепями островов на западе и отсутствием таковых на востоке.

Теория тектоники литосферных плит впервые в истории геологии носит глобальный характер, т.к. она касается всех районов земного шара и позволяет объяснить их историю развития, геологическое и тектоническое строение.

Заключительная часть занятия (5 минут)

Преподаватель доводит задание на самоподготовку и подводит итоги занятия. Отмечает студентов, наиболее активно работавших на занятии. Отвечает на задаваемые вопросы. Подается команда к завершению занятия.

Заведующий кафедрой ГДиВБ Л. В. Пихконен

Стратиграфия и геохронология смотри билет выше.

Билет 30
Становление тектоники литосферных плит.

Тектоника плит (plate tectonics)
— современная геологическая теория о движении литосферы. Согласно данной теории, в основе глобальных тектонических процессов лежит горизонтальное перемещение относительно целостных блоков литосферы – литосферных плит. Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

Сейчас уже нет сомнений, что горизонтальное движение плит происходит за счёт мантийных теплогравитационных течений — конвекции. Источником энергии для этих течений служит разность температуры центральных областей Земли, которые имеют очень высокую температуру (по оценкам, температура ядра составляет порядка 5000 °С) и температуры на её поверхности. Нагретые в центральных зонах Земли породы расширяются (см. термическое расширение), плотность их уменьшается, и они всплывают, уступая место опускающимся более холодными и потому более тяжёлым массам, уже отдавшим часть тепла земной коре

движение плит — следствие переноса тепла из центральных зон Земли очень вязкой магмой. При этом часть тепловой энергии превращается в механическую работу по преодолению сил трения, а часть, пройдя через земную кору, излучается в окружающее пространство. Так что наша планета в некотором смысле представляет собой тепловой двигатель.

Второстепенные силы — Сила вязкого трения, возникающая вследствие тепловой конвекции, играет определяющую роль в движениях плит, но кроме неё на плиты действуют и другие, меньшие по величине, но также важные силы. Это — силы Архимеда, обеспечивающие плавание более лёгкой коры на поверхности более тяжёлой мантии. Приливные силы, обусловленные гравитационным воздействием Луны и Солнца

31. Основные положения тектоники литосферных плит
.

Тектоника плит (plate tectonics)
— современная геологическая теория о движении литосферы. Согласно данной теории, в основе глобальных тектонических процессов лежит горизонтальное перемещение относительно целостных блоков литосферы – литосферных плит. Таким образом, тектоника плит рассматривает движения и взаимодействия литосферных плит.

1. Верхняя каменная часть планеты разделена на две оболочки, существенно различающиеся по реологическим свойствам: жесткую и хрупкую литосферу и подстилающую её пластичную и подвижную астеносферу.

2. Литосфера разделена по плиты, постоянно движущиеся по поверхности пластичной астеносферы.

3. Различают три типа относительных перемещений плит: расхождение (дивергенция), схождение (конвергенция) и сдвиговые перемещения.


Соответственно, выделяются и три типа основных границ плит:

Дивергентные границы
– границы, вдоль которых происходит раздвижение плит.

Конвергентные границы
– границы, вдоль которых происходит столкновение плит.

Трансформные границы
– границы, вдоль которых происходят сдвиговые смещения плит.

4. Объём поглощённой в зонах субдукции океанской коры равен объёму коры, возникающей в зонах спрединга.

5. Основной причиной движения плит служит мантийная конвекция, обусловленная мантийными теплогравитационными течениями.

6. Перемещения плит подчиняются законам сферической геометрии и могут быть описаны на основе теоремы Эйлера.

Оцените статью
Землетрясения