- Появление, принцип вычислений и какими приборами измеряется
- История появления шкалы Рихтера
- Шкалы интенсивности землетрясений в разных странах разные, к примеру
- Развитие теории
- Мощное землетрясение в Турции и Сирии
- Сейсмическая шкала в России
- Сейсмическая шкала в Европе
- Сейсмическая шкала в США
- Как измеряется магнитуда землетрясений?
- Почему происходят землетрясения
- Виды землетрясений
- Как измеряют землетрясения в баллах
- Шкала Рихтера
- Шкала Медведева — Шпонхойера — Карника
- Модифицированная шкала Меркалли в Европе и США
- Японская шкала сейсмической интенсивности
- Как связаны магнитуда и разрушения на поверхности
- Как предсказать землетрясение
- Кто исследует землетрясения
- Где чаще случаются землетрясения
- Причины землетрясений
- Какие бывают землетрясения
- Как измеряют мощность землетрясений
- Где чаще всего происходят землетрясения
- Меры безопасности при землетрясении
- Великое Чилийское землетрясение, 1960 год
- Землетрясение в Индийском океане, 2004 год
- Великое Аляскинское землетрясение, 1964 год
- Распространённые заблуждения
- Сейсмический момент и шкала Канамори
- Энергия землетрясения
- Частота землетрясений разной магнитуды
- Ссылки
- Магнитуда землетрясения и балльная шкала интенсивности землетрясения
Появление, принцип вычислений и какими приборами измеряется

Землетрясение – это стихийное бедствие, от которого страдают жители сейсмоактивных территорий Земли. Землетрясение приходит почти всегда внезапно и молниеносно разрушает целые города, проводя черту между «до» и «после».
Но даже в таком внезапном и разрушительном явлении ученые давно нашли варианты по наблюдению, вычислению и подсчетам силы подземных толчков. Шкала Рихтера, о которой мы будем сегодня говорить, как раз и является единицей измерения силы землетрясения и широко используется в сейсмологии по наши дни.
Шкала Рихтера является международной единицей измерения, которая определяет и классифицирует величины: силу и скорость сотрясений земной коры при начале сейсмической активности.
Шкала основана на измерении энергии, выделяемой перемещением коры в эпицентре. Сила землетрясения отсчитывается от энергии, то есть магнитуды землетрясения. Магнитуда землетрясения – величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн.
Стоит отметить, что магнитуда (шкала Рихтера) – это не то же самое, что интенсивность землетрясения. Последнюю высчитывают по шкалам интенсивности волн в земной поверхности.
Интенсивность землетрясения – мера величины сотрясения земной поверхности при землетрясении на охваченной им территории.
История появления шкалы Рихтера
Эта шкала была разработана в 1935 году Чарльзом Фрэнсисом Рихтером и Бено Гутенбергом в Калифорнийском технологическом институте. Первоначально она была названа как шкала ML (Magnitude Local). Ее так обозначают до сих пор: «ML» или «ML», но называют все именно «шкалой Рихтера».
При этом шкала Рихтера, разработанная Чарльзом Ф. Рихтером, не является ни инструментом, ни измерительным (линейкой со шкалой) или, по сути, каким-либо другим прибором. «Шкала» в данном случае – это математическая формула (десятичный логарифм), которая определяет величину и силу землетрясения.
С помощью шкалы Рихтера невозможно измерить величину землетрясений магнитудой более 8. Для измерения силы очень мощных землетрясений используются другие методы.
Шкалы интенсивности землетрясений в разных странах разные, к примеру

В России это 12-балльная шкала Медведева-Шпонхойера-Карника;В Европе применяется также 12-балльная Европейская макросейсмическая шкала;В США – 12-балльная модифицированная шкала Меркалли;В Японии, известной своими землетрясениями, – 7-балльная шкала Японского метеорологического агентства.
Шкала Рихтера была разработана в 1935 году американским сейсмологом Чарльзом Рихтером и его коллегой Бено Гутенбергом как способ количественной оценки величины или силы землетрясений. Рихтер, изучавший землетрясения в Калифорнии в то время, нуждался в простом способе точно выразить то, что качественно было очевидно и тогда: что одни землетрясения малы (поверхностны), а другие велики (глубоки). Но хоть это и было очевидно, доказательств тому не было.

Современные сейсмологи в первую очередь смотрят в корень проблемы – в разломы. Сегодня землетрясения и движение разломов неразрывно связаны в сознании сейсмологов – настолько, что, услышав о произошедшем землетрясении, они сразу же спрашивают о разломе, который его вызвал.
Например, землетрясение магнитудой 6,9 в 1994 году в Нортридже, которое привело к серьезным разрушениям в Лос-Анджелесе, было вызвано движением двух-четырех-метрового пласта в разломе длиной около 12 и шириной 15 километров.
Но когда Чарльз Рихтер взялся за вопрос, его внимание, напротив, было сосредоточено на самой вибрации земли, которую он мог легко отслеживать с помощью сейсмометров в Калифорнийском технологическом институте (Caltech). Для Рихтера землетрясение большой магнитуды было землетрясением лишь с сильной вибрацией Земли. Таким образом, для шкалы Рихтера нет прямой связи ни с одним из свойств первичного разлома, что вносило некую путаницу для понимания обывателями (то есть нами с вами, не связанным с сейсмологией).
Шкала Рихтера была смоделирована на основе шкалы звездных величин, используемой астрономами, которая количественно определяет объем света, испускаемого звездами (их светимость). Светимость звезды основана на телескопических наблюдениях ее яркости, которые корректируются для увеличения телескопа и расстояния звезды от Земли. Но поскольку светимость колеблется во многих десятках раз (например, Бетельгейзе в 50 000 раз ярче Альфы Центавры), астрономы вычисляют логарифм светимости, чтобы получить звездную величину: легко запоминаемое однозначное число.
Рихтер заменил измерения логарифма светимости на искомые – количество колебаний грунта, измеренные сейсмографом. Заметим, что в обоих случаях понятие силы довольно абстрактно: звездная величина – это не мера физического размера звезды (как можно было бы определить по ее диаметру), а скорее количество света, которое испускает звезда.
Сейсмическая величина – это не мера физического размера разлома землетрясения (как можно было бы количественно определить по его площади или его скольжению), а скорее величина вибрации, которую она испускает.

Аналог шкалы Рихтера определяется количеством энергии, выделяющейся от взрыва, и следующей после него сейсмической реакции волн земной коры.
Например, при землетрясении силой 2 балла выделяется количество энергии, равное 56 килограммам взрывчатого вещества. Конечно, поскольку эта энергия высвобождается на очень большой территории, мы даже ничего не чувствуем. Но когда площадь ограничена – мини-землетрясение будет ощутимым.
Также шкала Рихтера дает информацию не только о величине землетрясения, но и об энергии, выделяющейся при нем.
Разрушительная сила землетрясения пропорциональна 2/3 силы амплитуды колебания. Поэтому, когда интенсивность землетрясения увеличивается на одну единицу по шкале Рихтера, разрушительная сила землетрясения увеличивается в 10 (3/2) = 31,6 раза.
К примеру, магнитуда 3 – это крошечное землетрясение. Магнитуда в 6 баллов – это та величина, которая может нанести существенный ущерб. Магнитуда 9 может вызвать даже цунами, подобно тому, что наблюдалось в декабре 2004 года в Индийском океане .

В первоначальной формулировке Рихтера землетрясение на расстоянии 100 километров, которое вызвало сигнал амплитудой в один миллиметр на бумажном регистраторе сейсмометра Калтеха, было произвольно определено как магнитуда 3 (увеличение сейсмометра Рихтера составило около 2800, поэтому один миллиметр на бумажной записи соответствует примерно 0,36 микрона фактического движения Земли). Землетрясение на том же расстоянии, которое произвело 10-миллиметровую амплитудную запись, было обозначено магнитудой 4, 100-миллиметровая амплитуда – магнитудой 5 и так далее. В дальнейшем Рихтер разработал корректирующие таблицы, которые позволяли вычислять величины независимо от фактического расстояния землетрясения от сейсмометра.

Также магнитуда может быть легко определена из измерений, сделанных сейсмометром, который не должен быть расположен особенно близко к разлому. Действительно, современные сейсмометры могут регистрировать землетрясения магнитудой 5 и выше, происходящие в любой точке мира. Недостатком шкалы Рихтера является то, что величина – это единственное число, которое не может полностью охарактеризовать сложное явление, такое как землетрясение. Землетрясения с одинаковой магнитудой могут различаться многими фундаментальными способами, в том числе направлениями колебаний и их относительной амплитудой в разные периоды во время толчков. Эти различия могут привести к землетрясениям одинаковой величины, имеющим существенно разный уровень разрушительности.
Фактически с помощью современных чувствительных сейсмографов можно идентифицировать землетрясения с отрицательным значением по шкале Рихтера.
Развитие теории

И, наконец, начиная с середины 1960-х годов, сейсмологи добились довольно полного понимания того, как скользящий разлом порождает колебания грунта. Важной величиной, характеризующей прочность разлома, является сейсмический момент – алгебраическое произведение площади разлома, скольжения разлома и жесткости окружающей породы.
Как говорят сейсмологи, землетрясение с большой магнитудой соответствует разлому с большим моментом, причем увеличение на единицу величины соответствует увеличению момента примерно в 30 раз. Но эта связь неточна, есть много случаев, когда небольшие сдвиги вызывают неожиданно большое землетрясение или наоборот.
Примерное время чтения: 2 минуты
Ежегодно приборами регистрируется более миллиона землетрясений. Большинство подземных толчков людьми практически не ощущается, их фиксируют только специальные приборы.
Для измерения силы землетрясения используются две шкалы: одна для измерения интенсивности и другая для измерения магнитуды — энергетической характеристики землетрясения. Магнитуда определяется с помощью прибора, называемого сейсмографом. Его показания указывают на количество энергии, которая выделилась в очаге землетрясения. Для классификации землетрясений по магнитудам используется шкала Рихтера. Согласно этой шкале возрастанию магнитуды на единицу соответствует 32-кратное увеличение освобождение сейсмической энергии.
Мощное землетрясение в Турции и Сирии
При оценке землетрясения также учитывают степень воздействия толчков на людей. Для этого используется такая величина, как интенсивность землетрясения. В отличие от шкалы магнитуд она измеряется в баллах от 1 до 12 на основании внешних проявлений (воздействие подземного толчка на людей, предметы, строения, природные объекты). В России и в некоторых европейских странах используется 12-балльная международная шкала интенсивности землетрясений (MSK-64), получившая название по первым буквам ее авторов (Медведев — Шионхойер — Карник).

Соотношение между интенсивностью и магнитудой зависит от расстояния между очагом и точкой регистрации на поверхности земли. Так, например, если сильное землетрясение происходит вдали от мест обитания людей и не приводит к существенным разрушениям, то магнитуда такого землетрясения будет большая, а интенсивность — минимальная. И наоборот, если слабое землетрясение, произошло близко к земной поверхности, недалеко от населенного пункта и привело к повреждениям зданий, то в этом случае магнитуда будет относительно маленькой, а интенсивность — относительно большой.
В чем измеряют интенсивность землетрясений, смотрите в инфографике aif.ru.

Нажмите для увеличения
Примерное время чтения: 6 минут

Существуют две величины, характеризующие силу землетрясения, — магнитуда и интенсивность. Интенсивность землетрясения — это величина внешних проявлений подземных толчков, которая измеряется баллами и показывает ущерб, нанесённый данной местности. В разных странах используются различные «шкалы интенсивности», в России это 12-балльная шкала Медведева – Шпонхойера – Карника, в США — шкала Меркалли. В странах Европейского союза с 1996 года применяется более современная Европейская макросейсмическая шкала (EMS).
Сейсмическая шкала в России
1 балл — колебания ощущаются исключительно приборами. Человек колебаний не ощущает.
2 балла — колебания могут почувствовать только люди, что находятся в спокойном, неподвижном состоянии.
3 балла — колебания ощущаются только внутри некоторых зданий.
4 балла — колебания чувствует большинство людей. В зданиях могут дребезжать стёкла, посуда.
5 баллов — колебания могут разбудить спящего человека. В помещениях нетрудно заметить раскачивание висячих предметов (например, ламп или люстр), колебания мебели. Появляются трещины в штукатурке. На улице качаются тонкие ветки деревьев.
6 баллов — ощущаются колебания всеми людьми, со стен падают картины, отдельные куски штукатурки отваливаются.
7 баллов — неизбежны трещины в штукатурке и в стенах кирпичных зданий. В некоторых зданиях возникает угроза частичных обрушений.
8 баллов — существенные конструктивные повреждения зданий: крупные трещины в стенах, обрушение балконов, карнизов и дымовых труб. Появляются трещины на крутых склонах и на почве.
9 баллов — в некоторых зданиях возникают обвалы, обрушение перекрытий и стен.
10 баллов — большинство зданий находятся под угрозой обрушения. На поверхности земли возникают трещины шириной до 1 метра.
11 баллов — полномасштабное обрушение всех построек и конструкций, крупные обвалы в горах, большое количество крупных трещин на поверхности земли. Наблюдается разрушение мостов.
12 баллов — изменение рельефа местности вплоть до неузнаваемости. Катастрофические последствия землетрясений — обвалы, оползни, изменение рельефа.

Сейсмическая шкала в Европе
1 балл — колебания не отмечаются, ощущаются исключительно приборами.
2 балла — колебания могут почувствовать только люди и животные на верхних этажах зданий в состоянии покоя.
3 балла — колебания в виде раскачиваний и лёгкого дрожания чувствуют некоторые люди, находящиеся дома.
4 балла — лёгкое дребезжание посуды и стёкол внутри зданий.
5 баллов — лёгкие колебания по всей поверхности внутри зданий. Подвешенные предметы качаются от сильных вибраций. Объекты с высоко расположенным центром тяжести падают. Двери и окна раскрываются и закрываются.
6 баллов — падают небольшие предметы, тонкие трещины в штукатурке.
7 баллов — большинство предметов падает с полок, многие здания умеренно повреждены, неизбежны трещины в штукатурке, часть дымовых труб обрушивается.
8 баллов — перевёрнутая мебель, большинству зданий нанесён значительный ущерб. Большие трещины в стенах. Некоторые здания могут быть полностью разрушены.
9 баллов — памятники и колонны падают. Некоторые здания обрушены полностью.
10 баллов — большинство зданий полностью разрушены.
11 баллов — практически все здания полностью разрушены.
12 баллов — практически все здания наземные и подземные сильно повреждены или разрушены.

Сейсмическая шкала в США
1 балл — колебания не ощущаются людьми.
2 балла — колебания ощущают люди в спокойной обстановке на верхних этажах зданий.
3 балла — колебания чувствуют некоторые люди, находящиеся дома, в помещениях качаются висящие предметы.
4 балла — звенят оконные стёкла, посуда, скрипят двери.
5 баллов — колебания ощущаются на улице, выплёскивается жидкость из посуды.
6 баллов — трескается штукатурка и кирпичная кладка, сдвигается и переворачивается мебель, лопаются оконные стёкла.
7 баллов — трудно стоять на ногах, осыпается штукатурка, падают кирпичи, керамическая плитка, на поверхности водоёмов появляются волны.
8 баллов — падает штукатурка, рушатся некоторые кирпичные стены, дымовые трубы, башни, памятники, обламываются ветки деревьев, в грунте образовываются трещины.
9 баллов — лопаются каркасы строений и подземные трубы, образуются серьёзные трещины в грунте и песчаные воронки.
10 баллов — рушится кирпичная кладка и мосты, возникают мощные оползни.
11 баллов — деформация железнодорожных путей, выходят из строя подземные трубопроводы.
12 баллов — полное разрушение зданий, нарушение линии горизонта, взлетают в воздух отдельные предметы.
Как измеряется магнитуда землетрясений?
Магнитуда — условная величина, характеризующая общую энергию колебаний, вызванных землетрясением. Она определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы Рихтера (по имени американского сейсмолога Ч. Ф. Рихтера, предложившего её в 1935 году). С увеличением магнитуды на единицу энергия возрастает в 100 раз, т. е. при толчке с магнитудой 6 высвобождается в 100 раз больше энергии, чем при магнитуде 5, и в 10 000 больше, чем при магнитуде 4.
Шкала Рихтера содержит условные единицы (от 1 до 9,5):
Крупнейшими известными землетрясениями, согласно методу оценки Рихтера, были колумбийское землетрясение 1906 г. и ассамское землетрясение 1950 г. с магнитудой 8,6.
Когда происходят крупные землетрясения, новости пестрят словами, которые не всем понятны: «магнитуда», «сейсмическая активность», «рои» и тому подобное. Объясняем термины, и разбираемся можно ли предсказать землетрясения
Почему происходят землетрясения
Земная кора разбита на несколько больших тектонических плит, которые плавают на полужидкой мантии под ними. В основном землетрясения происходят в результате движения этих плит. Когда они движутся друг на друга, возникает огромное давление. В какой-то момент плиты соскальзывают, высвобождая энергию в виде сейсмических волн, которые мы воспринимаем как землетрясение.
Во время землетрясения движение тектонических плит может колебаться от всего нескольких миллиметров до метров. Магнитуда землетрясения определяется величиной смещения, которое происходит вдоль разлома, причем более крупные землетрясения соответствуют большему скольжению. Однако даже небольшие перемещения могут нанести значительный ущерб, если землетрясение происходит в густонаселенном районе и/или условия грунта усиливают сейсмические волны.
Виды землетрясений
- Тектонические землетрясения — возникают в результате движения и взаимодействия тектонических плит. Они являются наиболее распространенным типом землетрясений и могут произойти в любой точке мира.
- Вулканические землетрясения — происходят в результате вулканической активности, такой как движение магмы или обрушение вулканического конуса. Чаще всего они встречаются вблизи активных или потенциально активных вулканических районов.
- Обвальные землетрясения — случаются в результате обрушения подземных шахт, подземных полостей или других искусственных сооружений.
- Взрывные землетрясения — происходят в результате искусственных взрывов, таких как ядерные испытания или взрывные работы в карьерах.
- Оползневые землетрясения — происходят в результате перемещения больших масс камня, земли или других материалов вниз по склону.
- Рои землетрясений — последовательности землетрясений, которые происходят в определенной области в течение короткого периода времени (1–15 дней). Они часто связаны с вулканической или геотермальной активностью.

Как измеряют землетрясения в баллах
В разных странах принято по-разному оценивать интенсивность землетрясения.
- В России и некоторых других странах принята 12-балльная шкала Медведева — Шпонхойера — Карника.
- В Европе — 12-балльная Европейская макросейсмическая шкала.
- В США — 12-балльная модифицированная шкала Меркалли.
- В Японии — семибалльная шкала Японского метеорологического агентства.
Шкала Рихтера
Первую шкалу магнитуды землетрясений предложил американский сейсмолог Чарльз Рихтер в 1935 году, поэтому в обиходе значение магнитуды называют шкалой Рихтера. Шкала представляет собой логарифмическую шкалу, которая измеряет магнитуду землетрясений на основе амплитуды движения грунта, регистрируемой сейсмографами. Величина выражается в виде числа, причем каждое увеличение на единицу соответствует десятикратному увеличению движения грунта.
Сейсмограф — прибор, используемый для определения силы и направления и измерения землетрясения. Он состоит из сейсмометра — датчика, измеряющего движение грунта, — и устройства, которое записывает сигнал, производимый сейсмометром.
Проще говоря, сейсмограф подобен диктофону, который прослушивает землю и ведет запись. С той лишь разницей, что сейсмограф создает графический след волн землетрясения. Этот след затем можно проанализировать и определить величину и местоположение землетрясения.

Шкала Медведева — Шпонхойера — Карника
Шкала Медведева — Шпонхойера — Карника (MSK-64) — это способ измерения интенсивности землетрясения, который представляет собой описание последствий подземных толчков на поверхности Земли и на искусственных сооружениях. Шкала была разработана в 1970-х годах советскими геологами и используется в основном на территории бывшего Советского Союза и Восточной Европы.
Шкала варьируется от 1 до 12, при этом каждое увеличение на одну единицу соответствует увеличению интенсивности землетрясения. Каждый из уровней описывает количество повреждений зданий и степень движения грунта. Информация, полученная с помощью этой шкалы, используется агентствами по управлению стихийными бедствиями для планирования мер реагирования и восстановления, а также для оценки потенциального воздействия землетрясения.
Как баллы MSK-64 соответствуют разрушениям на поверхности
- Не ощущается. Регистрируется только сейсмическими приборами.
- Очень слабые толчки. Замечают только некоторые люди, находящиеся в полном покое на верхних этажах зданий, и домашними животными.
- Слабое. Ощущается только внутри некоторых зданий, как сотрясение земли от проезжающего трамвая.
- Интенсивное. Большинство людей замечает такое землетрясение. Можно наблюдать легкое колебание или дребезжание предметов быта, оконных стекол. Могут скрипеть двери и/или стены.
- Довольно сильное. Ощущают многие даже вне зданий, а внутри — все. Шатается мебель, маятники часов останавливаются, могут появиться трещины в окнах и штукатурке.
- Сильное. Ощущается всеми. Предметы падают с полок, а картины — со стен. Отдельные куски штукатурки откалываются.
- Очень сильное. Появляются трещины в стенах домов, есть видимые повреждения.
- Разрушительное. Образуются видимые трещины на крутых склонах и в сырой почве. Памятники сдвигаются, фабричные трубы не выдерживают и падают. Дома сильно повреждаются.
- Опустошительное. Сильно повреждаются или рушатся каменные и кирпичные постройки. У деревянных домов нарушается геометрия.
- Уничтожающее. Трещины в земле достигают ширины в метр. Возникают оползни и обвалы со склонов. Каменные здания рушатся. Ж/д рельсы искривляются.
- Катастрофа. Появляются большие трещины в поверхностных слоях земли. Возникают многочисленные оползни и обвалы. Каменные дома и мосты почти полностью разрушаются.
- Сильная катастрофа. Огромные изменения в земной коре: многочисленные трещины, обвалы, оползни. Меняется рельеф: возникают водопады, запруды, течение рек отклоняется. Ни одно сооружение не выдерживает.
Модифицированная шкала Меркалли в Европе и США
12-балльная европейская макросейсмическая шкала, также известная как шкала интенсивности Меркалли, была разработана в начале XX века итальянским сейсмологом Джузеппе Меркалли. Шкала также основана на наблюдении за воздействием землетрясения на окружающую среду и созданные человеком сооружения, такие как здания, дороги и мосты.
В то же время, определения различных уровней интенсивности в MSK-64 и Европейской шкалы могут немного отличаться. Например, MSK-64 основывается на количестве повреждений зданий в конкретном районе, в то время как определение того же уровня интенсивности по Европейской макросейсмической шкале учитывает и степень подвижек грунта, и количество повреждений искусственных сооружений.
В США тоже используют модифицированную шкалу Меркалли (Modified Mercalli Intensity, MMI). Она также основана на комбинации инструментальных показаний и наблюдений за воздействием землетрясения на окружающую среду и искусственные сооружения и варьируется от 1 (не ощущается) до 12 баллов (полный ущерб), но была изменена, чтобы лучше отражать последствия землетрясений именно в Соединенных Штатах.

Японская шкала сейсмической интенсивности
Японское метеорологическое агентство (JMA) использует для измерения интенсивности землетрясений собственную шкалу сейсмической интенсивности, также известную как шкала Синдо. Шкала Синдо варьируется от 0 до 7 баллов и учитывает как показания приборов, так и наблюдения за воздействием землетрясения на искусственные сооружения и окружающую среду.
Шкала Синдо была названа в честь японского сейсмолога Кийо Синдо, который разработал шкалу в 1950-х годах. Шкала была разработана для отражения интенсивности землетрясений в Японии, где последствия землетрясений для сооружений могут значительно отличаться из-за уникальной географии страны и стиля строительства.
Как связаны магнитуда и разрушения на поверхности
Хотя магнитуда землетрясения и объем разрушений на поверхности земли коррелируют, будет неверно связывать их напрямую. Важно учитывать глубину очага землетрясения и другие параметры. Например, землетрясение, очаг которого находится на большой глубине, может очень слабо ощущаться на поверхности. Но землетрясение той же магнитуды с неглубоким очагом, может нести разрушительные последствия.
Как предсказать землетрясение
В настоящее время ученые не в состоянии точно предсказывать землетрясения. Существуют методы обнаружения изменения сейсмической активности и деформаций в земной коре, которые могут указывать на повышенную вероятность землетрясения, но на основе этих методов нельзя сказать его точное время или место.
Основное внимание в настоящее время во всем мире уделяется совершенствованию систем раннего предупреждения, а также подготовке и повышению осведомленности населения. Системы раннего предупреждения используют сети сейсмического мониторинга для обнаружения начала землетрясения и быстрой выдачи предупреждений тем, кто находится в пострадавшем районе, позволяя им принять защитные меры до начала сильного сотрясения.
В качестве инструмента для прогнозирования землетрясений и систем раннего предупреждения сейчас активно рассматривают (но пока широко не используют) нейросети. Алгоритмы искусственного интеллекта, такие как машинное и глубокое обучение, можно обучить на исторических сейсмических данных для выявления закономерностей и составления прогнозов о будущих землетрясениях. Эти алгоритмы также можно использовать для анализа сейсмических данных в реальном времени. Однако точность прогнозирования землетрясений на основе ИИ все еще ограничена. Множество факторов усложняют прогнозирование землетрясений, включая ограниченный набор данных, доступных для обучения, нелинейный и хаотический характер землетрясений и влияние человеческой деятельности на измерения.

Кто исследует землетрясения
Существует множество компаний и организаций, которые занимаются исследованиями землетрясений — как частные, так и государственные.
- Геологическая служба США (USGS) — научное агентство правительства США, которое предоставляет информацию о землетрясениях и других стихийных бедствиях. Геологическая служба США управляет Передовой национальной сейсмической системой (ANSS), национальной сетью сейсмических приборов, которые отслеживают землетрясения в США.
- Обсерватория Земли Ламонт-Доэрти — исследовательское подразделение Колумбийского университета, специализирующееся на науках о земле и окружающей среде, включая исследования землетрясений.
- Калифорнийский технологический институт (Калтех) — ведущий исследовательский университет, где находится сейсмологическая лаборатория, которая проводит исследования землетрясений и оценку сейсмической опасности.
- Японское метеорологическое агентство (JMA) — национальное метеорологическое агентство Японии, отвечает за мониторинг землетрясений и их исследования в Японии.
- Научно-геологические компании, такие как Schlumberger, Halliburton и CGG — используют методы сейсмической съемки для изучения подповерхностной структуры Земли.
- Инженерные и консалтинговые компании, такие как Arup, MWH Global и GHD — специализируются на оценке сейсмической опасности и снижении рисков, а также на сейсмостойком проектировании и модернизации зданий.
- Технологические компании, такие как Early Warning Labs, ShakeAlert и MyShake — разрабатывают и внедряют системы раннего предупреждения землетрясений, используя сочетание сенсорных сетей, машинного обучения и других передовых технологий.
В России работают несколько организаций, которые занимаются исследованиями и мониторингом землетрясений.
- Институт физики Земли — ведущий российский научно-исследовательский институт, специализирующийся на геофизике, в том числе на изучении землетрясений.
- Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) — государственное учреждение, ответственное за мониторинг и прогнозирование опасных природных явлений, включая землетрясения.
- Институт динамики геосфер — научно-исследовательский институт РАН, который специализируется на геодинамике, сейсмологии и изучении землетрясений.
- Дальневосточное отделение РАН — филиал Российской академии наук, который проводит исследования в различных областях, включая сейсмологию и изучение землетрясений в Дальневосточном регионе.
Где чаще случаются землетрясения
В мире есть несколько районов, которые подвержены землетрясениям больше других.
Эти районы подвергаются более высокому риску землетрясений из-за наличия активных линий разломов и границ плит. Однако землетрясения могут произойти в любой точке мира, даже в районах, традиционно не считающихся подверженными высокому риску.
В 2023 году в Турции случилось крупнейшее с 1939 года землетрясение. Страна расположена на границе Африканской и Евразийской плит, которые сталкиваются и вызывают значительную тектоническую активность в регионе. Это приводит к высокой частоте землетрясений, в том числе средней и большой магнитуды. Западные и восточные регионы Турции особенно подвержены риску, а такие города, как Стамбул, Измир и Бурса, уязвимы к последствиям землетрясений. В связи с этим Турция предпринимает шаги по смягчению последствий землетрясений с помощью введения особых строительных норм, сейсмической модернизации зданий и планирования готовности к стихийным бедствиям.
Вероятность землетрясения в России зависит от конкретного региона. Некоторые части России, такие как полуостров Камчатка и острова Сахалин, расположены в сейсмически активных районах и подвержены более высокому риску землетрясений. Другие части России, такие как Северо-Европейская равнина, расположены в регионах с более низкой сейсмической активностью и подвержены меньшему риску.
Общая сейсмическая опасность в России считается от умеренной до высокой. В прошлом страна пережила несколько значительных землетрясений, включая Камчатское землетрясение 1952 года магнитудой 9,0 и Сахалинское землетрясение в Нефтегорске 1995 года магнитудой 7,5.
В 1930-х годах американский сейсмолог Чарльз Рихтер предложил знаменитую шкалу Рихтера — теоретический концепт мощности землетрясений. Он разработал теорию для того, чтобы измерять размеры землетрясений в южной части Калифорнии при помощи сейсмографических станций. Однако по мере того, как аналогичные станции начали появляться по всему миру, специалисты обнаружили, что метод Рихтера подходит только для землетрясений определенных частот и дальностей.
Чтобы извлечь максимум пользы из растущего числа сейсмографических станций, научное сообщество разработало новую методологию, построенную на оригинальной шкале Рихтера. Она включает в себя измерения объемных и поверхностных сейсмических волн, которые соответствуют разным типам сигналов. Каждое землетрясение высвобождает специфический объем энергии, поэтому магнитуда может различаться в зависимости от данных сейсмографических станций. Средняя погрешность составляет 0,3 единицы.
Продолжение истории после рекламы
- От 1 до 3,5 — Едва ощутимые толчки, которые фиксируются сейсмографами, но почти не отражаются на людях. Можно почувствовать в тихих помещениях и на верхних этажах зданий.
- От 3,5 до 5,5 — Ощутимое землетрясение. Предметы внутри помещений и на улице раскачиваются, дребезжат стекла. Колебания могут разбудить спящих людей.
- От 5,5 до 6,0 — На зданиях появляются трещины.
- От 6,0 до 8,0 — Повреждения построек. По стенам и штукатурке могут поползти трещины, в том числе довольно большие. Падение тяжелых предметов в квартирах, обвал карнизов и дымовых труб.
- От 9,0 до 11 — Огромные разрушения. Обвалы зданий, широкие трещины в грунте, полное уничтожение старых построек.
- От 11 до 12 — Полное разрушение всех построек вне зависимости от возраста и кардинальные изменения в рельефе местности.
Разные страны используют разные системы измерений, от 7-балльных (шкала Японского метеорологического агентства) до 12-балльных (Шкала Медведева — Шпонхойера — Карника).
Землетрясения и по сей день остаются самым непредсказуемым природным явлением на планете. Геологи до сих пор не нашли способа обнаруживать подземные толчки до того, как они произойдут, и сильные землетрясения нередко приводят к разрушительным последствиям. Вкратце разбираемся, как возникают землетрясения, какими они бывают и как их измеряют.
Причины землетрясений
Оболочка Земли состоит из четырех массивных слоев: внутреннее ядро, внешнее ядро, мантия и кора. Последняя лежит прямо поверх мантии и представляет собой аналог тонкой пленки, покрывающей поверхность нашей планеты. Однако эта пленка состоит из множества самостоятельных фрагментов, похожих на кусочки мозаики. Более того, эти кусочки медленно двигаются, проскальзывают мимо друг друга и периодически сталкиваются: мы называем их тектоническими плитами, а края плит — границами.
Границы плит состоят из множества разломов, и большинство землетрясений в мире происходят именно в них. Из-за того, края довольно грубые, во время движения плиты цепляются друг за друга, и в точках трения накапливается потенциальная энергия. Когда плиты наконец расцепляются, эта энергия высвобождается в виде сейсмических волн — и в результате возникает землетрясение.
Какие бывают землетрясения
- Тектонические — возникают из-за тектонических процессов в недрах земной коры.
- Вулканические — возникают из-за извержения вулканов.
- Обвальные — возникают в результате обрушения заброшенных горных рудников.
- Техногенные — возникают из-за вмешательства человека; например, мощного взрыва.
- Искусственные — возникают из-за мощного взрыва.
- Моретрясения — так называют тектонические или вулканические землетрясения, происходящие под водой или близ берега.
Как измеряют мощность землетрясений
Данные о землетрясениях фиксируются при помощи сейсмографов: специальных инструментов, состоящих из прочного основания, стоящего на земле, и тяжелого груза. Когда землетрясение набирает обороты, основание сейсмографа начинает трястись, тогда как груз остается неподвижным, т.к. пружина, к которой он прикреплен, поглощает все колебания. Таким образом, геологи записывают разницу в позиции между базой инструмента и грузом.
При помощи сейсмографа магнитуда землетрясений фиксируется по т.н. шкале Рихтера: люди часто путают магнитуду и интенсивность, но вторая выясняется гораздо позже — когда подземные толчки влияют на здания, людей или природные объекты. Шкала Рихтера оценивает магнитуды в единицах от 1 до 9,5, причем показатель редко выбирается во вторую половину диапазона. Сильнейшее землетрясение в истории человечества было зафиксировано в Чили в 1960 году: возникшие из-за него цунами привели к огромным разрушениям, в том числе и в других прибрежных странах.
Где чаще всего происходят землетрясения
Технически, землетрясение может произойти где угодно и когда угодно, но, как показывает история, чаще всего эти катаклизмы происходят в трех крупных географических зонах. Первая — Тихоокеанское вулканическое кольцо, которое иногда также называют «огненным кольцом». Он расположен вдоль границ множества океанских тектонических плит, где землетрясений часто случаются из-за провалов породы. Второй регион — Средиземноморский складчатый пояс, затрагивающий северо-запад Африки и Евразию. Третий — Срединно-Атлантический хребет, разделяющий северную Америку и Евразию.
На территории РФ же большинство землетрясений фиксируется на Камчатке и Курильских островах из-за их близости к «огненному кольцу». Так, в 1952 году цунами, вызванное землетрясением в Тихом океане, разрушило прибрежный камчатский город Северо-Курильск: эта трагедия унесла жизни почти 2 500 человек.
Меры безопасности при землетрясении
Американский филиал фонда «Красный Крест» опубликовал следующие рекомендации по безопасности во время землетрясения.
- Не пытайтесь выйти из дома, пока толчки не прекратятся. Если вы все же должны покинуть помещение, не используйте лифты — спускайтесь по лестнице.
- Если землетрясение застало вас в постели, свернитесь калачиком, держитесь за что-нибудь покрепче и защитите голову руками.
- Если землетрясение застало вас не в постели, найдите ближайший крепкий предмет мебели и спрячьтесь под ним, защитив голову руками. Не стойте в дверном проеме — они не более надежны, чем любой другой элемент помещения.
- Не пугайтесь пожарных тревог и систем пожаротушения: они часто срабатывают во время землетрясений, даже если в здании нет пожара.
- Если землетрясение застало вас вне помещения, отойдите как можно дальше от зданий, линий электропередач, деревьев и фонарей. Найдите безопасное место и оставайтесь на земле, пока толчки не прекратятся.
- Если землетрясение застало вас в транспортном средстве, немедленно остановитесь на обочине. Избегайте мостов, дорожных эстакад и линий электропередач. Пристегнитесь и не выходите из машины, пока толчки не прекратятся. Если вы находитесь в горной местности или неподалеку от ущелий, остерегайтесь падающих камней и схода селей.
6 февраля в Турции произошло одно из крупнейших землетрясений за последнее время. Афтершок от него дошел до Средиземноморского побережья, а аналитики говорят, что последствия мы будем ощущать еще долго.
По магнитуде это землетрясение — не самое серьезное. Оно не вошло в десятку крупнейших землетрясений, когда-либо зафиксированных в истории. Конечно по разрушительности они уступают другим, но их последствия тоже оказались катастрофическими для многих людей. О самых мощных землетрясениях в истории — в материале “Рамблера”.
Великое Чилийское землетрясение, 1960 год
По различным оценкам землетрясение получило магнитуду от 9,3 до 9,5. Несмотря на то, что изначально шкала Рихтера предполагала всего 9 баллов. Эпицентр расположился в городе Вальдивия, расположенном в 400 километров от столицы Чили Сантьяго.
После нескольких серьезных толчков на территории Чили появились более слабые. Они вызвали извержения вулканов, оползни и цунами, которые смывали все на своем пути. Несколько крупных городов в Чили были уничтожены. После серии отливов и цунами в Чили волна докатилась до Калифорнии и Японии, где люди погибли от стихийных бедствий.
Число жертв составило около шести тысяч человек, большинство людей погибли от цунами, вызванных землетрясением. Финансовый ущерб по ценам 1960 года оценивается в полмиллиарда долларов.
Землетрясение в Индийском океане, 2004 год
Эпицентр землетрясения находился в Индийском океане, недалеко от одного из индонезийских островов. По разным оценкам, магнитуда составила от 9,1 до 9,3. После землетрясения поднялось огромное цунами, высота волн была более 15 метров.
Ученые выяснили, что землетрясение вызвало движение тектонических плит на морском дне океана, в результате чего появились разрушительные цунами. Оно накрыло Шри-Ланку, Индонезию, Индию и Таиланд. На протяжении недели после землетрясения сейсмологи фиксировали значительное количество афтершоков.
Сначала сообщалось, что пострадало не более сотни человек, а потом начали фиксировать количество жертв. По данным независимых источников, количество погибших может достигать до 300 тысяч человек. Их точное количество подсчитать невозможно, так как многие люди утонули и пропали без вести. В прибрежных районах было объявлено ЧП, около миллиона людей остались без своих домов. В итоге землетрясение вошло в десятку самых разрушительных в истории.
Великое Аляскинское землетрясение, 1964 год
Магнитуда землетрясения оценивалась в 8,3 балла по шкале Рихтера. Эпицентр землетрясения располагался в Аляскинском заливе и вызвал катастрофические последствия в виде обвалов и лавин в горах. Эти последствия сильно ударили по инфраструктуре Аляски — были завалены шоссе и железные дороги, поэтому у многих людей не было возможности передвигаться по стране. Землетрясение также вызвало сдвиг береговой линии. Примечательно, что даже некоторые дома, находившиеся в районе оползней, отодвинулись, но не пострадали и не были разрушены.
Из-за того, что район, в котором произошло землетрясение, был не так густонаселен, большого количество жертв и экономических потерь удалось избежать. Всего после землетрясения погиб 131 человек.
Магниту́да землетрясе́ния — величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн. Первоначальная шкала магнитуды была предложена Рихтером в 1935, поэтому в обиходе значение магнитуды ошибочно называют шкалой Рихтера.
Распространённые заблуждения
- Магнитуда характеризует землетрясение как цельное, глобальное событие и не является показателем интенсивности землетрясения, ощущаемой в конкретной точке на поверхности Земли. Интенсивность землетрясения, измеряемая в баллах, не только сильно зависит от расстояния до очага; в зависимости от глубины центра и типа горных пород сила землетрясений с одинаковой магнитудой может различаться на 2—3 балла.
- Магнитуда — безразмерная величина, она не измеряется в баллах.
- Правильное употребление: «землетрясение с магнитудой 6.0», «землетрясение силой в 5 магнитуд по шкале Рихтера»
- Неправильное употребление: «землетрясение с магнитудой 6 баллов», «землетрясение силой 6 баллов по шкале Рихтера».
Рихтер предложил для оценки силы землетрясения (в его эпицентре) десятичный логарифм перемещения (в микрометрах) иглы стандартного сейсмографа Вуда-Андерсона, расположенного на расстоянии не более 600 км от эпицентра: ML = lgA + f, где f — корректирующая функция, вычисляемая по таблице в зависимости от расстояния до эпицентра. Энергия землетрясения примерно пропорциональна A3 / 2, то есть увеличение магнитуды на 1,0 соответствует увеличению амплитуды колебаний в 10 раз и увеличению энергии примерно в 32 раза.
Эта шкала имела несколько существенных недостатков:
- Рихтер использовал для градуировки своей шкалы малые и средние землетрясения южной Калифорнии, характеризующиеся малой глубиной очага.
- Предложенный способ измерения учитывал только поверхностные волны, в то время, как при глубинных землетрясениях существенная часть энергии выделяется в форме объёмных волн.
В течение следующих нескольких десятков лет шкала Рихтера уточнялась и приводилась в соответствие с новыми наблюдениями. Сейчас существует несколько производных шкал, самыми важными из которых являются:
Магнитуда объёмных волн
mb = lg(A / T) + Q(D,h)
где A — амплитуда колебаний земли (в микрометрах), T — период волны (в секундах), и Q — поправка, зависящая от расстояния до эпицентра D и глубины очага землетрясения h.
Магнитуда поверхностных волн
Ms = lg(A / T) + 1,66lgD + 3,30
Эти шкалы плохо работают для самых крупных землетрясений — при

Сейсмический момент и шкала Канамори
В 1977 Канамори предложил принципиально иную оценку интенсивности землетрясений, основанную на понятии сейсмического момента.
Сейсмический момент землетрясения определяется как

- μ — модуль сдвига горных пород, порядка 30 ГПа;
- A — площадь, на которой замечены геологические разломы;
- u — среднее смещение вдоль разломов.
Таким образом, в единицах СИ сейсмический момент имеет размерность Па × м² × м = Н × м.
Магнитуда по Канамори определяется как

, где M0 — сейсмический момент, выраженный в Н × м.
Шкала Канамори хорошо согласуется с более ранними шкалами при 3 < M < 7 и лучше подходит для оценки крупных землетрясений.
Энергия землетрясения
В каком-то смысле различные способы измерения магнитуды землетрясений являются приближениями к «идеальной» энергетической шкале:

где E — энергия землетрясения в джоулях.
Сейсмическая энергия, выделяемая при ядерном взрыве мощностью 1 мегатонна, эквивалентна землетрясению с магнитудой около 6,0. Стоит заметить, что только небольшая часть энергии взрыва преобразуется в сейсмические колебания.
Частота землетрясений разной магнитуды
За год на Земле происходит примерно
- 1 землетрясение с магнитудой 8,0 и выше;
- 10 — с магнитудой 7,0—7,9;
- 100 — с магнитудой 6,0—6,9;
- 1000 — с магнитудой 5,0—5,9.
Сильнейшее зарегистрированное землетрясение произошло в Чили в 1960 — по более поздним оценкам, магнитуда Канамори составляла 9,5. Считается, что землетрясения на Земле не могут иметь магнитуду существенно выше 9,5, поскольку горные породы не могут накопить больше энергии без разрушения. Сейсмические события с большей энергией могут быть вызваны ударом метеорита.
Ссылки
.
.
- A — площадь, на которой замечены геологические разломы;
- u — среднее смещение вдоль разломов.
Магниту́да землетрясе́ния — величина, характеризующая энергию, выделившуюся при землетрясении в виде сейсмических волн. Первоначальная шкала магнитуды была предложена американским сейсмологом Чарльзом Рихтером в 1935 году, поэтому в обиходе значение магнитуды называют шкалой Рихтера.
Магнитуда землетрясения и балльная шкала интенсивности землетрясения
Шкала Рихтера содержит условные единицы (от 1 до 9,5) — магнитуды, которые вычисляются по колебаниям, регистрируемыми сейсмографом. Эту шкалу часто путают со шкалой интенсивности землетрясения в баллах (по 12-балльной системе), которая основана на внешних проявлениях подземного толчка (воздействие на людей, предметы, строения, природные объекты). Когда происходит землетрясение, то сначала становится известной именно его магнитуда, которая определяется по сейсмограммам, а не интенсивность, которая выясняется только спустя некоторое время, после получения информации о последствиях.
Правильное употребление: «землетрясение магнитудой 6,0».
Прежнее употребление: «землетрясение силой 6 баллов по шкале Рихтера».
Рихтер предложил для оценки силы землетрясения (в его эпицентре) десятичный логарифм перемещения (в микрометрах) иглы стандартного сейсмографа Вуда-Андерсона, расположенного на расстоянии не более 600 км от эпицентра:

где — корректирующая функция, вычисляемая по таблице в зависимости от расстояния до эпицентра. Энергия землетрясения примерно пропорциональна

- Рихтер использовал для градуировки своей шкалы малые и средние землетрясения южной Калифорнии, характеризующиеся малой глубиной очага.
- Предложенный способ измерения учитывал только поверхностные волны, в то время как при глубинных землетрясениях существенная часть энергии выделяется в форме объёмных волн.

где — амплитуда колебаний земли (в микрометрах), — период волны (в секундах), и — поправка, зависящая от расстояния до эпицентра и глубины очага землетрясения .

Эти шкалы плохо работают для самых крупных землетрясений — при ~ 8 наступает насыщение.

- — модуль сдвига горных пород, порядка 30 ГПа;
- — площадь, на которой замечены геологические разломы;
- — среднее смещение вдоль разломов.



где — энергия землетрясения в джоулях.
Сейсмическая энергия, выделяемая при ядерном взрыве мощностью в 1 мегатонну (1 мегатонна = 4,184·1015 Дж), эквивалентна землетрясению с магнитудой около 7. Стоит заметить, что только небольшая часть энергии взрыва преобразуется в сейсмические колебания.
За год на Земле происходит примерно:
- 1 землетрясение с магнитудой 8,0 и выше;
- 10 — с магнитудой 7,0—7,9;
- 100 — с магнитудой 6,0—6,9;
- 1000 — с магнитудой 5,0—5,9.
Сильнейшее зарегистрированное землетрясение произошло в Чили в 1960 году — по более поздним оценкам, магнитуда Канамори составляла 9,5.
