Когда происходят крупные землетрясения, новости пестрят словами, которые не всем понятны: «магнитуда», «сейсмическая активность», «рои» и тому подобное. Объясняем термины, и разбираемся можно ли предсказать землетрясения
- Почему происходят землетрясения
- Виды землетрясений
- Как измеряют землетрясения в баллах
- Шкала Рихтера
- Шкала Медведева — Шпонхойера — Карника
- Модифицированная шкала Меркалли в Европе и США
- Японская шкала сейсмической интенсивности
- Как связаны магнитуда и разрушения на поверхности
- Как предсказать землетрясение
- Кто исследует землетрясения
- Где чаще случаются землетрясения
- Почему происходят землетрясения?
- Пять самых мощных землетрясений за историю наблюдений
- Характеристики
- География явления
- Признаки и особенности
- Причины возникновения
- Классификация
- Тектонические
- Вулканические
- Техногенные
- Подводные
- Искусственные
- Обвальные
- Удар космических тел
- Измерение силы землетрясений
- Шкала магнитуд
- Шкала интенсивности
- Шкала Медведева-Шпонхойера-Карника
- Последствия землетрясения
- Правила поведения при землетрясениях
- Самые сильные землетрясения
- Смещение континентальных плит
- «Вопрос не в том, случится ли землетрясение, а в том, когда оно случится»
- Ключевая роль способа строительства и грунта при землетрясениях
- Страшная катастрофа в Турции и Сирии. DW Новости (06. 23)
Почему происходят землетрясения
Земная кора разбита на несколько больших тектонических плит, которые плавают на полужидкой мантии под ними. В основном землетрясения происходят в результате движения этих плит. Когда они движутся друг на друга, возникает огромное давление. В какой-то момент плиты соскальзывают, высвобождая энергию в виде сейсмических волн, которые мы воспринимаем как землетрясение.
Во время землетрясения движение тектонических плит может колебаться от всего нескольких миллиметров до метров. Магнитуда землетрясения определяется величиной смещения, которое происходит вдоль разлома, причем более крупные землетрясения соответствуют большему скольжению. Однако даже небольшие перемещения могут нанести значительный ущерб, если землетрясение происходит в густонаселенном районе и/или условия грунта усиливают сейсмические волны.
Виды землетрясений
- Тектонические землетрясения — возникают в результате движения и взаимодействия тектонических плит. Они являются наиболее распространенным типом землетрясений и могут произойти в любой точке мира.
- Вулканические землетрясения — происходят в результате вулканической активности, такой как движение магмы или обрушение вулканического конуса. Чаще всего они встречаются вблизи активных или потенциально активных вулканических районов.
- Обвальные землетрясения — случаются в результате обрушения подземных шахт, подземных полостей или других искусственных сооружений.
- Взрывные землетрясения — происходят в результате искусственных взрывов, таких как ядерные испытания или взрывные работы в карьерах.
- Оползневые землетрясения — происходят в результате перемещения больших масс камня, земли или других материалов вниз по склону.
- Рои землетрясений — последовательности землетрясений, которые происходят в определенной области в течение короткого периода времени (1–15 дней). Они часто связаны с вулканической или геотермальной активностью.
Как измеряют землетрясения в баллах
В разных странах принято по-разному оценивать интенсивность землетрясения.
- В России и некоторых других странах принята 12-балльная шкала Медведева — Шпонхойера — Карника.
- В Европе — 12-балльная Европейская макросейсмическая шкала.
- В США — 12-балльная модифицированная шкала Меркалли.
- В Японии — семибалльная шкала Японского метеорологического агентства.
Шкала Рихтера
Первую шкалу магнитуды землетрясений предложил американский сейсмолог Чарльз Рихтер в 1935 году, поэтому в обиходе значение магнитуды называют шкалой Рихтера. Шкала представляет собой логарифмическую шкалу, которая измеряет магнитуду землетрясений на основе амплитуды движения грунта, регистрируемой сейсмографами. Величина выражается в виде числа, причем каждое увеличение на единицу соответствует десятикратному увеличению движения грунта.
Сейсмограф — прибор, используемый для определения силы и направления и измерения землетрясения. Он состоит из сейсмометра — датчика, измеряющего движение грунта, — и устройства, которое записывает сигнал, производимый сейсмометром.
Проще говоря, сейсмограф подобен диктофону, который прослушивает землю и ведет запись. С той лишь разницей, что сейсмограф создает графический след волн землетрясения. Этот след затем можно проанализировать и определить величину и местоположение землетрясения.
Шкала Медведева — Шпонхойера — Карника
Шкала Медведева — Шпонхойера — Карника (MSK-64) — это способ измерения интенсивности землетрясения, который представляет собой описание последствий подземных толчков на поверхности Земли и на искусственных сооружениях. Шкала была разработана в 1970-х годах советскими геологами и используется в основном на территории бывшего Советского Союза и Восточной Европы.
Шкала варьируется от 1 до 12, при этом каждое увеличение на одну единицу соответствует увеличению интенсивности землетрясения. Каждый из уровней описывает количество повреждений зданий и степень движения грунта. Информация, полученная с помощью этой шкалы, используется агентствами по управлению стихийными бедствиями для планирования мер реагирования и восстановления, а также для оценки потенциального воздействия землетрясения.
Как баллы MSK-64 соответствуют разрушениям на поверхности
- Не ощущается. Регистрируется только сейсмическими приборами.
- Очень слабые толчки. Замечают только некоторые люди, находящиеся в полном покое на верхних этажах зданий, и домашними животными.
- Слабое. Ощущается только внутри некоторых зданий, как сотрясение земли от проезжающего трамвая.
- Интенсивное. Большинство людей замечает такое землетрясение. Можно наблюдать легкое колебание или дребезжание предметов быта, оконных стекол. Могут скрипеть двери и/или стены.
- Довольно сильное. Ощущают многие даже вне зданий, а внутри — все. Шатается мебель, маятники часов останавливаются, могут появиться трещины в окнах и штукатурке.
- Сильное. Ощущается всеми. Предметы падают с полок, а картины — со стен. Отдельные куски штукатурки откалываются.
- Очень сильное. Появляются трещины в стенах домов, есть видимые повреждения.
- Разрушительное. Образуются видимые трещины на крутых склонах и в сырой почве. Памятники сдвигаются, фабричные трубы не выдерживают и падают. Дома сильно повреждаются.
- Опустошительное. Сильно повреждаются или рушатся каменные и кирпичные постройки. У деревянных домов нарушается геометрия.
- Уничтожающее. Трещины в земле достигают ширины в метр. Возникают оползни и обвалы со склонов. Каменные здания рушатся. Ж/д рельсы искривляются.
- Катастрофа. Появляются большие трещины в поверхностных слоях земли. Возникают многочисленные оползни и обвалы. Каменные дома и мосты почти полностью разрушаются.
- Сильная катастрофа. Огромные изменения в земной коре: многочисленные трещины, обвалы, оползни. Меняется рельеф: возникают водопады, запруды, течение рек отклоняется. Ни одно сооружение не выдерживает.
Модифицированная шкала Меркалли в Европе и США
12-балльная европейская макросейсмическая шкала, также известная как шкала интенсивности Меркалли, была разработана в начале XX века итальянским сейсмологом Джузеппе Меркалли. Шкала также основана на наблюдении за воздействием землетрясения на окружающую среду и созданные человеком сооружения, такие как здания, дороги и мосты.
В то же время, определения различных уровней интенсивности в MSK-64 и Европейской шкалы могут немного отличаться. Например, MSK-64 основывается на количестве повреждений зданий в конкретном районе, в то время как определение того же уровня интенсивности по Европейской макросейсмической шкале учитывает и степень подвижек грунта, и количество повреждений искусственных сооружений.
В США тоже используют модифицированную шкалу Меркалли (Modified Mercalli Intensity, MMI). Она также основана на комбинации инструментальных показаний и наблюдений за воздействием землетрясения на окружающую среду и искусственные сооружения и варьируется от 1 (не ощущается) до 12 баллов (полный ущерб), но была изменена, чтобы лучше отражать последствия землетрясений именно в Соединенных Штатах.
Японская шкала сейсмической интенсивности
Японское метеорологическое агентство (JMA) использует для измерения интенсивности землетрясений собственную шкалу сейсмической интенсивности, также известную как шкала Синдо. Шкала Синдо варьируется от 0 до 7 баллов и учитывает как показания приборов, так и наблюдения за воздействием землетрясения на искусственные сооружения и окружающую среду.
Шкала Синдо была названа в честь японского сейсмолога Кийо Синдо, который разработал шкалу в 1950-х годах. Шкала была разработана для отражения интенсивности землетрясений в Японии, где последствия землетрясений для сооружений могут значительно отличаться из-за уникальной географии страны и стиля строительства.
Как связаны магнитуда и разрушения на поверхности
Хотя магнитуда землетрясения и объем разрушений на поверхности земли коррелируют, будет неверно связывать их напрямую. Важно учитывать глубину очага землетрясения и другие параметры. Например, землетрясение, очаг которого находится на большой глубине, может очень слабо ощущаться на поверхности. Но землетрясение той же магнитуды с неглубоким очагом, может нести разрушительные последствия.
Как предсказать землетрясение
В настоящее время ученые не в состоянии точно предсказывать землетрясения. Существуют методы обнаружения изменения сейсмической активности и деформаций в земной коре, которые могут указывать на повышенную вероятность землетрясения, но на основе этих методов нельзя сказать его точное время или место.
Основное внимание в настоящее время во всем мире уделяется совершенствованию систем раннего предупреждения, а также подготовке и повышению осведомленности населения. Системы раннего предупреждения используют сети сейсмического мониторинга для обнаружения начала землетрясения и быстрой выдачи предупреждений тем, кто находится в пострадавшем районе, позволяя им принять защитные меры до начала сильного сотрясения.
В качестве инструмента для прогнозирования землетрясений и систем раннего предупреждения сейчас активно рассматривают (но пока широко не используют) нейросети. Алгоритмы искусственного интеллекта, такие как машинное и глубокое обучение, можно обучить на исторических сейсмических данных для выявления закономерностей и составления прогнозов о будущих землетрясениях. Эти алгоритмы также можно использовать для анализа сейсмических данных в реальном времени. Однако точность прогнозирования землетрясений на основе ИИ все еще ограничена. Множество факторов усложняют прогнозирование землетрясений, включая ограниченный набор данных, доступных для обучения, нелинейный и хаотический характер землетрясений и влияние человеческой деятельности на измерения.
Кто исследует землетрясения
Существует множество компаний и организаций, которые занимаются исследованиями землетрясений — как частные, так и государственные.
- Геологическая служба США (USGS) — научное агентство правительства США, которое предоставляет информацию о землетрясениях и других стихийных бедствиях. Геологическая служба США управляет Передовой национальной сейсмической системой (ANSS), национальной сетью сейсмических приборов, которые отслеживают землетрясения в США.
- Обсерватория Земли Ламонт-Доэрти — исследовательское подразделение Колумбийского университета, специализирующееся на науках о земле и окружающей среде, включая исследования землетрясений.
- Калифорнийский технологический институт (Калтех) — ведущий исследовательский университет, где находится сейсмологическая лаборатория, которая проводит исследования землетрясений и оценку сейсмической опасности.
- Японское метеорологическое агентство (JMA) — национальное метеорологическое агентство Японии, отвечает за мониторинг землетрясений и их исследования в Японии.
- Научно-геологические компании, такие как Schlumberger, Halliburton и CGG — используют методы сейсмической съемки для изучения подповерхностной структуры Земли.
- Инженерные и консалтинговые компании, такие как Arup, MWH Global и GHD — специализируются на оценке сейсмической опасности и снижении рисков, а также на сейсмостойком проектировании и модернизации зданий.
- Технологические компании, такие как Early Warning Labs, ShakeAlert и MyShake — разрабатывают и внедряют системы раннего предупреждения землетрясений, используя сочетание сенсорных сетей, машинного обучения и других передовых технологий.
В России работают несколько организаций, которые занимаются исследованиями и мониторингом землетрясений.
- Институт физики Земли — ведущий российский научно-исследовательский институт, специализирующийся на геофизике, в том числе на изучении землетрясений.
- Федеральная служба по гидрометеорологии и мониторингу окружающей среды (Росгидромет) — государственное учреждение, ответственное за мониторинг и прогнозирование опасных природных явлений, включая землетрясения.
- Институт динамики геосфер — научно-исследовательский институт РАН, который специализируется на геодинамике, сейсмологии и изучении землетрясений.
- Дальневосточное отделение РАН — филиал Российской академии наук, который проводит исследования в различных областях, включая сейсмологию и изучение землетрясений в Дальневосточном регионе.
Где чаще случаются землетрясения
В мире есть несколько районов, которые подвержены землетрясениям больше других.
Эти районы подвергаются более высокому риску землетрясений из-за наличия активных линий разломов и границ плит. Однако землетрясения могут произойти в любой точке мира, даже в районах, традиционно не считающихся подверженными высокому риску.
В 2023 году в Турции случилось крупнейшее с 1939 года землетрясение. Страна расположена на границе Африканской и Евразийской плит, которые сталкиваются и вызывают значительную тектоническую активность в регионе. Это приводит к высокой частоте землетрясений, в том числе средней и большой магнитуды. Западные и восточные регионы Турции особенно подвержены риску, а такие города, как Стамбул, Измир и Бурса, уязвимы к последствиям землетрясений. В связи с этим Турция предпринимает шаги по смягчению последствий землетрясений с помощью введения особых строительных норм, сейсмической модернизации зданий и планирования готовности к стихийным бедствиям.
Вероятность землетрясения в России зависит от конкретного региона. Некоторые части России, такие как полуостров Камчатка и острова Сахалин, расположены в сейсмически активных районах и подвержены более высокому риску землетрясений. Другие части России, такие как Северо-Европейская равнина, расположены в регионах с более низкой сейсмической активностью и подвержены меньшему риску.
Общая сейсмическая опасность в России считается от умеренной до высокой. В прошлом страна пережила несколько значительных землетрясений, включая Камчатское землетрясение 1952 года магнитудой 9,0 и Сахалинское землетрясение в Нефтегорске 1995 года магнитудой 7,5.
Могло ли вызвать землетрясение в Турции какое-то сейсмическое оружие? Как Луна способна спровоцировать подземный удар? Почему ученые не верят 600 предвестникам землетрясений? Об этом корреспондент «РГ» беседует с заведующим лаборатории сейсмической опасности Института физики Земли РАН, доктором физико-математических наук Алексеем Завьяловым.
Алексей Дмитриевич, землетрясение в Турции породило шквал самой разной информации, в том числе гипотез и версий о причине катастрофы. Давайте оценим несколько самых «громких». Естественно, не обошлось без конспирологии. Например, что американцы заранее вывели из Турции консульства, а затем применили сейсмическое оружие. Речь идет о знаменитом проекте НАARP, который вспоминают, как только на планете происходит что-то экстремальное с климатом, с озоновым слоем, с сейсмикой.
Алексей Завьялов: Энергию главного толчка турецкого землетрясения можно оценить как 10 в 16-17 степени Дж. Энергия огромная! При взрыве атомной бомбы мощностью 20 Кт выделяется энергия порядка 10 в 14 степени Дж, а при взрыве водородной бомбы 20 Мт — 10 в 17 степени Дж. Но сегодня взрывы такой мощности обязательно зафиксируют все мировые системы мониторинга. Других источников, чтобы сгенерировать такую энергию, нет.
Кстати, всего 5-10 процентов энергии подземного удара превращается в сейсмические волны, остальное уходит в тепло.
И тем менее в СМИ среди причин называют, к примеру, гравитационные силы Луны, а китайские ученые считают, что виновато замедление вращения ядра Земли, а возможно, даже изменение его направления.
Алексей Завьялов: Гравитация Луны может сработать, но только при определенных условиях. Здесь надо напомнить, как происходят землетрясения. Плавающие в жидкой мантии тектонические плиты могут наползать, перемещаться друг относительно друга и зацепляться. В этом случае их движение останавливается, и в этих зонах сцепления накапливаются огромные напряжения. Но вовсе не обязательно, что оно обязательно превратится в землетрясение. Для толчка, возможно, не хватает последней капли. Такая ситуация может длиться сколько угодно. И при определенных условиях гравитация Луны может оказаться той самой последней каплей, спусковым крючком, который спровоцирует мощный подземный толчок. Подчеркну, что в этом нет ничего нового.
Что касается влияния изменений скорости вращения ядра Земли, то это явление давно известно. Никакой связи между ним и землетрясениями пока не установлено.
После каждого катастрофического землетрясения многие недоумевают. Вот, казалось бы, произошли форшоки — умеренные по силе толчки. Разве это не повод давать SOS? Есть еще множество предвестников. Неужели ученые не могут их классифицировать, составить своеобразную «таблицу Менделеева» предвестников и на этой основе предсказывать сильные подземные удары?
Алексей Завьялов: Да, база предвестников огромна, их более 600. Но беда в том, все они ненадежны. Ни один не гарантирует однозначного результата. Скажем, вы видите рост концентрации радона в колодцах, вроде, надо бить тревогу, переселять людей, но ничего не происходит. А через какое-то время опять наблюдается рост радона, но на этот раз — сильнейший толчок. Кто на такой зыбкой основе решится выселять сотни тысяч людей? Аналогичная картина и с форшоками, которые составляют всего несколько процентов из общего числа землетрясений. Статистика показывает, что они часто порождают ложные предупреждения.
Однако китайцы в 1975 году сумели заранее предсказать сильное землетрясение..
Алексей Завьялов: Сумели, но это один из немногих успешных, хорошо описанных прогнозов на основе предвестников. Тогда в одном из районов страны ученые заметили, что сильно изменился уровень грунтовых вод, а в феврале, когда было холодно, вдруг в больших количествах появились змеи, которые выползли из своих нор. На основании этих признаков было предсказано землетрясение. Люди несколько недель по ночам уходили из домов. И действительно, толчок произошел, причем практически без жертв. На этот раз повезло, ведь предвестник мог и не сработать, как бывало в подавляющем большинстве случаев. Как говорится, стечение обстоятельств. Увы, пока наука может предсказать вероятность землетрясения на 5-7 лет, но бессильна дать кратковременный прогноз на месяц, а тем более день.
Вот упомянули змей, которые участвовали в прогнозе. А ведь еще была знаменитая история с собакой. Она буквально вытащила хозяина из дома и спасла во время сильнейшего ашхабадского землетрясения. Так, может, сделать ставку на различных живых предвестников? Ведь шахтеры брали с собой канареек, которые оповещали о появлении опасного метана.
Алексей Завьялов: Если бы было все так очевидно, то давно в домах опасных по сейсмике районах жили «сейсмические канарейки». Здесь такая ситуация. С одной стороны, известны примеры аномального поведения животных перед Крымскими землетрясениями 1927 года и Ашхабадским землетрясением, но перед землетрясениями в Спитаке и в Нефтегорске ничего подобного замечено не было. Вообще историй про необычное поведение животных множество, но все на уровне слухов.
Знаю, что в 70-е годы работала специальная экспедиция в Таджикистане, где изучали разные предвестники, в том числе и биологические — необычное поведение живых организмов. Но аргументированных доказательств, какой-то закономерности, на основании которой можно с высокой вероятностью делать прогнозы, получить не удалось.
Читал, что еще в 60-70-х годах прошлого века ученые были уверены, что смогут понять логику сейсмики. В мире начался бум исследований, вкладывались большие деньги, создавались специальные полигоны. Однако задача оказалось сложнее, чем предполагали. С тех пор прошло более 50 лет, наука совершила множество прорывов в самых разных направлениях, например, искусственный интеллект уже ставит самые сложные диагнозы, предсказывает банкротства, прогнозирует климат, а землетрясения так и остаются загадкой. Точный прогноз для науки недоступен. В чем дело? Ведь за эти годы накоплен огромный материал? Или его недостаточно? Чего-то не хватает?
Алексей Завьялов: Хороший вопрос. Я бы разделил его на две части. Действительно, объем самых разных данных о землетрясениях и их предвестниках огромен. На их основе мы строим сейсмические карты, где указано, что в таких-то районах в течение ближайших десятилетий могут с такой-то вероятностью произойти землетрясения, сотрясения от которых достигнут определенного уровня. Эти прогнозы строители обязаны учитывать в своих проектах и возводить здания с повышенной устойчивостью.
Теперь о том, почему, имея такую большую базу данных, не удается прогнозировать сильные толчки с точностью до месяца, а тем более дня? Увы, даже имея огромный материал, наука пока не разобралась с физическими процессами, которые порождают землетрясения. Видимо, нужен человек, который посмотрел бы на всю эту картину под неожиданным углом зрения и нашел решение этой очень старой задачи.
Как когда-то Эйнштейн в огромном количестве физических теорий и экспериментов увидел теорию относительности?
Алексей Завьялов: Согласен, очевидно, требуется «сейсмический» Эйнштейн.
Кстати, почти после каждого сильного землетрясения появляется сообщение, что такой-то ученый его предсказал. Вот и на этот раз СМИ написали, что голландcкий сейсмолог Франк Хубербитс еще 3 февраля предупреждал, что в этом районе Турции будет удар магнитудой 7,5. Может, сейсмический Эйнштейн уже появился?
Почему происходят землетрясения?
В центре Земли находится ядро, окруженное жидкой раскаленной мантией. Самый верхний слой -кора, состоит из литосферных плит. На данный момент ученым известно о крупных, десятках средних и огромном количестве маленьких плит. Они не стоят на месте, а постоянно двигаются, врезаясь друг в друга.
Когда одна плита напирает и давит на другую, между ними скапливается колоссальное напряжение. Но вечно оно копиться не может: происходит сдвиг и «разрядка» напряжения — землетрясение.
Большинство очагов землетрясений возникает на глубине 30-40 км под поверхностью Земли.
Наиболее активные зоны — Тихоокеанский пояс, проходящий вдоль почти всего побережья Тихого океана (примерно 90 % всех землетрясений), и Альпийский пояс — от Индонезии до Средиземного моря (5-6 % всех землетрясений).
Сейсмически активной считается 20% территории России: Камчатка, Сахалин, Курильские острова, Прибайкалье, Иркутская область, Бурятская Республика, Якутия, Кавказ, побережья Черного и Каспийского морей.
Около 5 процентов этих районов являются крайне опасными — там часто происходят толчки, приводящие к 8-10-балльным землетрясениям. В опасных зонах проживает около 20 миллионов человек.
Самое разрушительное землетрясение в России за последние 100 лет произошло на острове Сахалин в 1995 году. В одном из поселков с населением 3197 человек, подземный толчок магнитудой 7,6 унес 2040 жизни.
Пять самых мощных землетрясений за историю наблюдений
В течение года на планете фиксируют:
1 катастрофическое землетрясение — магнитуда выше 8; 10-20 очень сильных — от 7 до 8; 100-120 сильных — от 6 до 7; 800-1000 умеренных — от 5 до 6; 6000-6200 легких — от 4 до 5; 40-50 тысяч слабых — от 3 до 4. Каждый день 1000-8000 очень слабых — магнитуда меньше 3.
Самые мощные землетрясения зафиксированы в Чили (1960 год, магнитуда 9,5), Индонезии (2004 год, 9,3), США (1964 год, 9,2), Япония (2011 год , 9,1), Курилы (1952 год, 9,0).
Самые страшными за всю историю считаются землетрясения: в 1556 году в Китае погибло 830 тысяч человек, 1976 год, Китай — 242 тысячи, 525 год, Византия — 250 тысяч, 1920 год, Китай — 240 тысяч, 2004 год, Индонезия — 230 тысяч.
Палаточный лагерь для лишившихся крова в Кахраманмараше (Турция). Такие лагеря разбиты и в других пострадавших от разрушений районах. / Getty Images
О природе «турецкого разлома» и как он может отозваться в наших регионах, «РГ» рассказали директор Института сейсмологии и геодинамики Крымского федерального университета имени В.И. Вернадского Юрий Вольфман и главный научный сотрудник Института геологии Дагестанского федерального исследовательского центра РАН Василий Черкашин.
Но сначала Юрий Вольфман напомнил, почему мощное землетрясение произошло именно в турецкой провинции Кахраманмараш. Через территорию Турции проходит система Анатолийских разломов или разрывов земной коры, вдоль которых в свое время Африка и Аравия присоединились к Евразии. Сейчас активизировался Анатолийский разлом, который отделяет Аравию от Евразии.
Юрий Михайлович, волны турецкого землетрясения дойдут до Крыма?
Юрий Вольфман: Никаких данных о сейсмических сотрясениях на полуострове не поступает. И, по расчетам сейсмологов, их не должно быть.
Непрерывный мониторинг Крымско-Черноморского региона проводится сетью сейсмических наблюдений нашего университета. Она включает семь станций вдоль побережья от Севастополя до Керчи. Даже мелких событий пока не происходит. Но надо иметь ввиду, что Крым — сейсмоопасный регион, он находится на периферии сейсмоопасного пояса.
Опасная зона Анатолийского разлома тянется от Кипра до Грузии в районе озера Ван
А какие перспективы у южных регионов? Тревожные сообщения приходят с Кавказа.
Юрий Вольфман: Да, опасная зона Анатолийского разлома тянется от Кипра до Грузии в районе озера Ван и до Махачкалы в Дагестане, куда дошли отголоски из Турции, судя по толчкам. На северо-восточном фланге зоны они ощущались также в Сочи.
Если процесс будет продолжаться, и напряжение в разломе не спадет, сейсмическая активность действительно может возникнуть на юге России. Но пока точно этого никто вам не предскажет.
Можно ожидать мощное землетрясение и в регионе Мраморного моря. Но опять же, я бы не взял на себя смелость утверждать, что оно обязательно там произойдет.
Хорошо, предугадать нельзя, но меры принять можно?
Юрий Вольфман: В качестве превентивных мероприятий по защите населения применяется система долгосрочного прогноза. Идет изучение сейсмической территории на протяжении многих лет.
Выводят закономерности, позволяющие оценить максимальную амплитуду возможного землетрясения в районе и воздействие от опасной зоны на соседние территории.
Строятся карты сейсмического районирования, они входят в состав строительных норм и правил. Например, если на карте в такой-то точке указана планка в 9 баллов, то здесь нельзя возводить здания с сейсмической устойчивостью ниже нее. В Крыму и в целом в России такие карты обновляют с периодичностью в 20-30 лет.
Чем обусловлена высокая сейсмичность Кавказа?
Василий Черкашин: Взаимодействием Аравийской и Скифской тектонических плит и той же Анатолийской платформы.
В последнее время землетрясений с большой магнитудой у нас не было. А мелкие происходят. И это неплохо, поскольку нет накопления большого потенциала, мелкие землетрясения сбрасывают напряженность. Заметили, сколько было афтершоков в Турции? Это какое напряжение копилось!
Анализ наблюдений ученых Института физики Земли РАН и наши исследования показывают, что в направлении Кавказа идет миграция сейсмичности со стороны Анатолийской платформы.
Трагедия в Турции чему должна нас научить? Знаем, вы анализировали видео из Кахраманмараша.
Василий Черкашин: Видно, что с 20-этажным домом ничего не стало, а 9-этажный рассыпался. Скорее всего, это произошло из-за отсутствия сейсмопоясов. Как мне рассказали, турки смягчили требования по сейсмике, так как с 1939 года не было крупных землетрясений.
Ежегодно на Земле происходят сотни тысяч землетрясений, но их амплитуда настолько незначительная, что они остаются незамеченными. Сильные же толчки чреваты серьезными разрушениями. Преимущественно они случаются на дне океана, поэтому больше всего таким неприятностям подвержены города, расположенные в непосредственной близости к ним.
Колебания земной поверхности образуются вследствие быстрого смещения участка литосферы. От очага землетрясения исходят волны растяжения и сжатия. При этом образуются подвижки и разрушения земной коры.
Характеристики
Среди основных характеристик землетрясения выделяют следующие:
- глубина очага (обычно бывает в пределах от 10 до 30 км, иногда значительно глубже);
- магнитуда (по Рихтеру измеряется по шкале от 0 до 9 баллов. Увеличение на единицу означает, что амплитуда колебания имеет десятикратное возрастание, а энергия землетрясения увеличивается в 30 раз);
- интенсивность на поверхности земли (зависит от магнитуды, глубины очага, расстояния от эпицентра и других факторов).
Сила толчков измеряется в баллах по шкале от 1 до 12, где 12 — показатель серьезной катастрофы, когда разрушаются сооружения.
География явления
Очаги землетрясений распределены неравномерно по планете и практически совпадают с границами литосферных плит. Основной сейсмический пояс находится в Тихом океане, где выделяется до 80% всей сейсмической энергии.
Это явление отличается тем, что оно происходит в одних и тех же местах. В основном на этих территориях, в местах стыка двух литосферных плит, находятся вулканы и горы. Поэтому для горной местности характерны подземные толчки. В России землетрясения случаются в основном на Байкале, Камчатке и Приморье.
Признаки и особенности
Признаками подземных толчков являются не только показатели на специальных приборах, но и специфические изменения в окружающей обстановке. По некоторым из них можно понять, что в скором времени возможно проявится землетрясение:
- в небе появляются перистые облака в форме длинных полос;
- домашние животные ведут себя беспокойно, мечутся;
- в водных источниках уровень воды снижается;
- электроприборы начинают давать сбой;
- вспышки света в виде рассеянных зарниц.
Причины возникновения
Внутренние толчки случаются тогда, когда происходит сдвиг тектонических плит. Под земной корой находится горячая пластичная магма, внешне похожая на вязкую жидкость. Магма представляет собой расплавленные породы под сильным давлением.
Континентальные платформы похожи на острова, плывущие в жидкой магме. Там, где эти платформы соприкасаются и трутся друг о друга, появляется высокая сейсмическая активность. Породы, находящиеся близко к земной поверхности, снимают это напряжение. Процесс проявляется в виде землетрясения.
Классификация
Землетрясения делятся на несколько видов в зависимости от характера их происхождения и глубины очага. Сила колебаний тем меньше, чем глубже находится эпицентр. Явление имеет неприятные последствия для человека в виде разрушений сооружений в том случае, если очаг находится на глубине менее 30 км.
Условно по глубине возникновения землетрясения делят на три группы:
- глубокие: более 400 км;
- промежуточные: от 60 до 400 км;
- поверхностные: менее 60 км.
Тектонические
Возникают вследствие перемещения тектонических плит, при этом сдвигаются горные породы и возникает внутреннее напряжение. Когда такая энергия накапливается, происходят деформация земной коры: появляются трещины, проседает почва. Вектор ударной волны зависит от силы землетрясения и может распространяться на тысячи километров.
Вулканические
Такой тип внутренних толчков отличается незначительной силой колебания, продолжительностью и многогранностью. Могут длиться до нескольких месяцев. Опасности для человека не несут, служат предвестниками скорого извержения вулкана.
Возникают по причине сильного давления газов на поверхность Земли и резкого движения раскаленной лавы. Таким образом, в вулкане накапливается напряжение, после чего возникают сейсмические волны в виде толчков.
Техногенные
Бывает, что землетрясения появляются вследствие действий человека, влекущих за собой ослабление горных пород: наблюдается рост числа подземных толчков в местах добычи нефти и газа, а также в местах расположения шахт и карьеров.
Негативным образом сказывается и строительство водохранилищ по той причине, что вода разрушает породы, находящиеся под высоким давлением из-за толщи воды.
Подводные
Подводные землетрясения влекут за собой появление цунами (представляют собой огромные разрушительные волны) вследствие смещения морского дна, когда один участок поднимается, а второй опускается. Происходят колебания водной поверхности, чтобы вернуться к первоначальному уровню. Приближающиеся к берегу волны достигают высоты в 5-10 м. Сейсмические приборы позволяют спрогнозировать появление цунами за несколько часов.
Искусственные
Искусственные землетрясения появляются из-за действий человека, например, при запуске ракет, бурении скважин, хранении ядерного оружия и др. Например, в 2006 году были зарегистрированы подземные колебания сразу в нескольких странах. Причиной тому стало испытание ядерной бомбы в КНДР.
Обвальные
Проявляются в виде обвалов и оползней. Обычно магнитуда невысокая, но иногда последствия бывают трагичными для людей. Один из таких примеров – случай в Перу, когда лавина объемом в 13 млн кубических метров сошла с горы Аскаран. При этом, скорость перемещения лавины составила 400 км/ч. Под нейоказались несколько поселений. Погибло более 18 тыс. человек.
Удар космических тел
Возникают по причине ударов астероидов, метеоритов и комет. Космический объект после преодоления земной атмосферы врезается в поверхность Земли и взрывается. Ударная волна распространяется на значительные расстояния и воспринимается как землетрясение.
Измерение силы землетрясений
Подземные толчки характеризуются магнитудой и интенсивностью. Единицами измерения являются баллы, указывающие на масштаб последствий разрушений.
Краткая характеристика по шкале:
- 2 балла: толчки слабые, человек может их ощутить только если находится на верхнем этаже здания;
- 3 балла: заметить могут лишь немногие люди, находящиеся в зданиях;
- 4 балла: ощущают люди, находящиеся в здании, дребезжат стекла и посуда;
- 5 баллов: может почувствовать подземные толчки даже тот человек, который находится на улице, предметы падают, здания раскачиваются;
- 6 баллов: картины падают, в стенах образуются трещины;
- 7 баллов: в каменных стенах зданий появляются трещины;
- 8 баллов: появляются трещины на сырой почве, падают фабричные трубы, здания рушатся;
- 9 баллов: рвутся подземные коммуникации, многие дома полностью разрушаются;
- 10 баллов: происходят оползни, в почве образуются трещины шириной до 1 м, железнодорожные рельсы изгибаются;
- 11 баллов: на поверхности Земли появляются множественные трещины, здания и мосты полностью разрушаются;
- 12 баллов: изменение рельефа местности вплоть до неузнаваемости.
Шкала магнитуд
Сейсмические станции ведут наблюдения подземных толчков и дают общую характеристику энергии упругих колебаний, которые вызываются подземными толчками или взрывами. Результаты фиксируют на основании шкалы магнитуд, которая впервые была разработана в 1935 году и называется шкалой Рихтера.
Всего существует несколько магнитудных шкал:
- локальная магнитуда;
- магнитуда, величина которой зависит от поверхностных волн;
- магнитуда, которая зависит от объемных волн;
- моментная магнитуда.
Магнитуда насчитывает от 0 до 9 баллов, где 0 — фиксируется только датчиками и человеком не ощущается, а 9 баллов указывают на сильное разрушение построек и различных сооружений.
Шкала Рихтера предоставляет информацию о выделяемой энергии. Например, при магнитуде в 3 балла ощущается небольшое дрожание земли, при 6 баллах наносится существенный ущерб, при 9 баллах может возникнуть цунами.
Недостатком шкалы Рихтера является тот факт, что на основании одной только величины сложно охарактеризовать такое сложное явление как землетрясение.
Шкала интенсивности
Интенсивность дает качественную характеристику подземным толчкам. Также указывает, каким получился масштаб воздействия на людей, животных, объекты, поверхность земли.
Всего существует 4 шкалы интенсивности:
- в России — Медведева-Шпонхойера-Карника;
- в США — Меркалли;
- в государствах ЕС – EMS (Европейская макросейсмическая шкала);
- в Японии — Японского метеорологического агентства (Shindo).
Шкала Медведева-Шпонхойера-Карника
Имеет 12-бальную систему измерения, была изобретена в 1964 году советским геофизиком Сергеем Медведевым, получила широкое применение в государствах бывшего Советского Союза и Европе.
Последствия землетрясения
Землетрясение — одно из самых опасных явлений природы для человека. Проблема в том, что предсказывать его довольно сложно, поэтому редко удается заранее к нему подготовиться.
Точность прогноза опасного для человека явления приравнивается практически к нулю. Гораздо проще предсказать извержение вулкана, тропические циклоны, наводнения.
Для предсказания землетрясений используются следующие показатели:
- статистические данные;
- выделения сейсмически активных зон;
- изменения магнитного поля;
- изменения состава газов, поступающих из глубин;
- изучение быстрых смещений земной коры;
- фиксация незначительных толчков.
Сергей Пулинец, доктор физико-математических наук, ведущий сотрудник ИКИ РАН отмечает: “Принятие решения о том, предупреждать людей о возможной катастрофе или нет ввиду низкой вероятности точности предсказаний — это большая ответственность. На данный момент ни в одной стране мира нет точного алгоритма и последовательности действий: как эвакуировать людей, какие службы должны будут работать и т.д. К тому же, запрещено сообщать населению о возможной катастрофе — данные можно передавать только властям”.
Правила поведения при землетрясениях
При первых признаках землетрясения нужно выключить свет, воду и газ, нельзя пользоваться лифтом. Если ощущаются сильные толчки, следует спрятаться в углу комнаты, в дверном проеме, под кровать или стол, которые защитят от падающих предметов. Важно держаться подальше от тяжелой мебели и окон.
При нахождении на улице в момент подземных толчков нужно отойти подальше от зданий и линий электропередач.
При нахождении в автомобиле лучше остаться в нем, пока подземные толчки не прекратятся.
Среди главных причин трагических последствий землетрясений являются не столько сами толчки, сколько обрушение зданий или отдельных его частей, оборванные электропровода, падение стекол, пожары, некотролируемое поведение людей, вызванное паникой.
Самые сильные землетрясения
За недавние годы произошли землетрясения, повлекшие за собой серьезные последствия:
- декабрь, 2004 год: землетрясение привело к возникновению цунами на побережьях Индии, Шри-Ланки, Таиланда, Индонезии, Малайзии. В результате погибло 230 тыс. человек.
- март, 2005 год: о. Ниас (Индонезия), 8,2 балла. Погибло 1,3 тыс. человек.
- октябрь 2005 год: Пакистан, выше 7 баллов, жертвами катастрофы стали 73 тыс. человек, крыши над головой лишились более 3 млн людей.
- май, 2008 год: провинция Сычуань, Китай, магнитуда составила 7,9 баллов, погибло 87 тыс. людей, без жилья остались более 5 млн человек.
- январь, 2010 год: остров Гаити, 7 баллов, из жизни ушли 220 тыс. человек.
Все эти события не были предсказаны настолько точно, чтобы к ним можно было заранее подготовиться и обезопасить себя.
В результате мощного землетрясения 6 февраля в Турции и Сирии более 5000 человек погибли и еще больше — получили ранения. Спасатели и волонтеры продолжают работать на пределе возможностей, чтобы спасти людей из-под завалов, однако против них играют неблагоприятные погодные условия. Температура в пострадавших районах временами опускается ниже нуля, в некоторых местах прошел сильный снегопад.
По данным турецкого агентства по борьбе со стихийными бедствиями AFAD, эпицентром землетрясения магнитудой 7,4 стала турецкая провинция Кахраманмараш, расположенная близ границы с Сирией. Вскоре после первого землетрясения в турецкой провинции Газиантеп произошло еще одно — магнитудой 6,6.
Смещение континентальных плит
Чтобы понять, почему в Турции и некоторых других регионах мира землетрясения происходят снова и снова, необходимо учитывать, что земная кора — это своего рода пазл, и при этом — относительно динамичный, состоящий из множества частей, а именно: нескольких гигантских океанических плит и нескольких континентальных плит земной коры.
Единого мнения относительно точного числа мелких и мельчайших плит у ученых нет. Однако считается доказанным, что эти плиты постоянно перемещаются, на несколько сантиметров в год. И это нормально. Они либо удаляются друг от друга, либо трутся друг о друга, или же одна плита заходит под другую. Тогда приходит в движение расположенный на них континент. И это называется тектоникой плит.
«Вопрос не в том, случится ли землетрясение, а в том, когда оно случится»
В октябре 2020 года землетрясение произошло в Эгейском море. Его эпицентр находился недалеко от провинции Измир, подземные толчки были вблизи поверхности моря. Более 100 человек тогда погибли и более 1000 получили ранения.
Турция уже давно интересует сейсмологов. Немецкий исследовательский центр геологических наук (GFZ) в Потсдаме устанавливает измерительное оборудование в Турции и проводит сейсмический мониторинг с 1980-х годов. Эти наблюдения показывают, что риск землетрясений особенно высок во всем регионе вокруг Мраморного моря, на побережье которого расположен Стамбул.
Как сказал еще в 2019 году Марко Бонхофф (Marco Bohnhoff), сейсмолог из GFZ и эксперт по региону: «Вопрос не в том, произойдет ли землетрясение. Вопрос в том, когда это произойдет». Такую оценку Бонхофф и другие эксперты основывают на том, что за всю историю Стамбула произошло уже несколько сильных землетрясений, смещение плит под Мраморным морем продолжается, а непосредственно у турецкой столицы находится сейсмоопасная зона, которая долгое время была подозрительно спокойной.
«Многое говорит о том, что эта территория сейчас и уже долгое время является «сцепленной». При этом нарастает напряжение, которое в какой-то момент превышает прочность породы. В результате толчка обе плиты смещаются на несколько метров в течение нескольких секунд», — пояснил сейсмолог в интервью платформе ESKP (Earth System Knowledge Platform).
Ключевая роль способа строительства и грунта при землетрясениях
Фактическую опасность для зданий, инфраструктуры и местного населения представляют возникающие в результате землетрясения сейсмические волны, говорит Бонхофф. Их сила имеет решающее значение для потенциальных разрушений и числа жертв.
По словам эксперта, лучшей защитой при землетрясении является возведение устойчивых к подземным толчкам построек. К сожалению, это очень дорого, признает сейсмолог, поэтому возникает вопрос: что лучше — модернизация или строительство с нуля. В результате последних землетрясений в районе турецко-сирийской границы только в Турции, по некоторым данным, обрушилось более 1700 зданий.
«На фотографиях видно, что некоторые из рухнувших зданий, возможно, были построены до вступления в силу современных правил безопасности при землетрясениях. Эти здания не были рассчитаны на землетрясение такой силы», — отмечает Мохаммад Кашани, доцент кафедры строительного и сейсмостойкого инженерного дела в Университете Саутгемптона в Великобритании.
«Сочетание огромной силы толчков и возникновение их относительно близко к поверхности земли придало этому землетрясению большую разрушительную силу. Мы должны внимательно изучить рухнувшие здания и извлечь уроки из этого ужасного события. Только так мы сможем сделать наши здания и города безопасными при землетрясениях в будущем», — уверен эксперт.
Между тем важную роль в плане безопасности построек при землетрясениях играет не только способ строительства, но и поверхность, грунт, на котором возводят здания: чем она тверже, тем лучше. «Лучше всего, если поверхность состоит из гранита. По-другому дело обстоит, если она состоит из высохших отложений, таких как песок или глина», — говорит Бонхофф.
По его словам, на мягких грунтах более вероятно усиление движения поверхности, иногда сопровождающееся так называемым «эффектом разжижения». Сейсмолог сравнивает это с мокрым песком на пляже. Если несколько раз нажать на одно и то же место в песке, там соберется вода, «и тогда почва становится неустойчивой».
Турция и Сирия после мощнейшего землетрясенияТысячи человек стали жертвами сильного землетрясения на юго-востоке Турции в 10 км от границы с Сирией. Разрушено огромное число зданий. На помощь отправились спасатели и волонтеры из разных стран. Фотогалерея DW.Жертвами землетрясения стали почти пять тысяч человекОколо 5 тысяч человек стали жертвами разрушительного землетрясения, происшедшего утром 6 февраля на юго-востоке Турции недалеко от границы с Сирией. Спустя сутки турецкие власти сообщили о почти 3,5 тыс. погибших и более 20,5 тыс. пострадавших. По данным разных источников, в Сирии погибли около 1,4 тыс. и пострадали свыше 20,5 тыс. человек. На фото — разрушенные дома в городе Диярбакыр, Турция.Тысячи домов полностью разрушеныВ результате землетрясения в Турции разрушены тысячи домов. И тысячи людей находятся под завалами. На месте катастрофы работают спасательные отряды и добровольцы, помогающие искать выживших людей под обломками зданий. На этом фото спасатели ищут пострадавших и погибших на развалинах жилого дома в Диябакыре.Эрдоган назвал землетрясение крупнейшим в истории страны с 1939 годаПрезидент Турции Реджеп Эрдоган на заседании Координационного центра по чрезвычайным ситуациям назвал нынешнее землетрясение крупнейшим в истории страны с момента Эрзинджанского землетрясения в 1939 году, в результате которого погибли почти 33 тысячи человек.Спасатели извлекают людей из-под обломковГород Адана в Турции: спасатели и добровольцы передают носилки с человеком, извлеченным из-под рухнувшего здания. Выжил ли он, неизвестно.Ребенка удалось спастиСпасатели выносят девочку, найденную живой под обломками рухнувшего дома в городе Диярбакыр. Поисково-спасательные работы координирует турецкий Президиум по управлению стихийными бедствиями и чрезвычайными ситуациями (AFAD). Власти страны обратились за международной помощью.Спасательные работы затрудняет сильный снегопадВ некоторых районах Турции спасательные работы затрудняет сильный снегопад, дороги покрыты льдом и снегом. На этой фотографии — здание средневековой мечети в турецком городе Малатья, разрушенное в результате землетрясения.Масштабы разрушений в Сирии огромныМощные подземные толчки ощущались и в Сирии. На этой фотографии хорошо видны масштабы разрушений: спасательные отряды и добровольцы осматривают обломки рухнувших зданий в поисках выживших в сирийском городе Харем.»Белые каски» в поисках пострадавшихЧлены сирийской неправительственной организации «Белые каски» сообщили о почти 400 погибших и свыше 2,5 тыс. пострадавших в результате землетрясения на подконтрольных повстанцам территориях страны. Ситуацию там они называют «катастрофической». На фото — спасатели из «Белых касок» обследуют руины здания в поисках выживших в городе Зардана на северо-западе сирийской провинции Идлиб.Поиски выживших под обломками зданий в СирииЛюди ищут выживших среди обломков рухнувшего здания в городе Азмарин в Сирии.Сирия обратилась за международной помощьюТела погибших лежат в пластиковых пакетах на улице возле морга в городе Алеппо. Правительство Сирии, как и власти соседней Турции, обратилось за международной помощью.Греческие спасатели летят в ТурциюГреция отправила в Турцию спасательный отряд в составе 21 человека и двух специально обученных собак, а также инженера-строителя, пяти врачей и экспертов по сейсмическому планированию. На фото — греческие спасатели с собаками садятся в военно-транспортный самолет на базе ВВС Элефсина в западной части Афин.Солдаты ливанского инженерного полка перед отлетом в ТурциюСолдаты ливанского инженерного полка везут спасательное оборудование в международном аэропорту имени Рафика Харири в Бейруте, направляясь в Турцию для оказания помощи в спасательных работах.
Страшная катастрофа в Турции и Сирии. DW Новости (06. 23)
This browser does not support the video element.
Читать в полной версии