- Вулканы.
- Состав вулканических пород.
- Глубокофокусные землетрясения.
- Длительность землетрясений.
- Техногенные землетрясения
- Регистрация землетрясений.
- Чем грозит сдвиг литосферных плит?
- Землетрясения вызывают цунами
- Продольные и поперечные волны.
- Поверхностные волны
- Сопутствующие явления.
- Землетрясения происходят до извержения вулканов
- Интенсивность землетрясений
- Тектонические землетрясения
- Землетрясение
- Состав лавы.
- Действующие вулканы земли.
- Самое сильное землетрясение в истории
- Пути сейсмических волн.
- Что произошло с тектоническими плитами в Турции
- Сейсмические волны.
- Внутреннее строение Земли
- Амплитуда и период
- Последствия землетрясений.
- Лава
- Землетрясения происходят и в России
- Прогноз землетрясений.
- Вулканические землетрясения
- Изучение землетрясений.
- Возникновение очага землетрясения.
- Фонарь, освещающий недра
- Отражение и преломление.
- Географическое распространение землетрясений.
- «А там уж природа сама решает, как поступить»
- Как работает шкала Рихтера
- Предсказать землетрясение невозможно
- Сейсмографы.
- Интенсивность землетрясений.
- Параметры землетрясений.
- В Австралии меньше всего землетрясений
- Магнитуда землетрясений
- В чем особенность «горизонтальных» землетрясений?
- Причина землетрясения в Турции
Вулканы.
Вулкан (от лат. vulcanus – огонь, пламя), геологическое образование, возникающее над каналами и трещинами в земной коре, по которым на земную поверхность извергаются лава, пепел, горячие газы, пары воды и обломки горных пород. Различают действующие, уснувшие и потухшие вулканы, а по форме – центральные, извергающиеся из центрального выводного отверстия, и трещинные, имеющие вид зияющих трещин или ряда небольших конусов. Основные части вулкана: магматический очаг (в земной коре или верхней мантии), жерло – выводной канал, по которому магма поднимается к поверхности; конус – возвышенность на поверхности Земли из продуктов выброса вулкана, кратер – углубление на поверхности конуса вулкана. Лавовый купол имеет округлую в плане форму и крутые склоны, прорезанные глубокими бороздами. В жерле вулкана может образоваться пробка застывшей лавы, которая препятствует выделению газов, что впоследствии приводит к взрыву и разрушению купола. Крутосклонный пирокластический конус сложен чередующимися прослоями пепла и шлаков. Щитовой вулкан с большим кратером (кальдерой), и тонким покровом застывшей лавы на поверхности. Излияния лавы могут происходить из кратера на вершине или через трещины на склонах. Внутри кальдеры, а также на склонах щитового вулкана встречаются воронки обрушения. Конус стратовулкана состоит из чередующихся слоев лавы, пепла, шлаков и более крупных обломков. Современные вулканы расположены вдоль крупных разломов и тектонических подвижных областей (главным образом на островах и берегах Тихого и Атлантического океанов). Активные действующие вулканы: Ключевская Сопка и Авачинская Сопка (Камчатка, Российская Федерация), Везувий (Италия), Исалько (Сальвадор), Мауна-Лоа (Гавайские о-ва) и др.
Состав вулканических пород.
Существует множество типов вулканических пород, различающихся по химическому составу. Чаще всего встречаются четыре типа, принадлежность к которым устанавливается по содержанию в породе диоксида кремния: базальт – 48–53%, андезит – 54–62%, дацит – 63–70%, риолит – 70–76%. Породы, в которых количество диоксида кремния меньше, в большом количестве содержат магний и железо. При остывании лавы значительная часть расплава образует вулканическое стекло, в массе которого встречаются отдельные микроскопические кристаллы. Исключение составляют т.н. фенокристаллы. Цвет вулканического стекла зависит от количества присутствующего в нем железа: чем больше железа, тем оно темнее.
Глубокофокусные землетрясения.
Большинство землетрясений происходит в литосфере, т.е. на глубине до 200 км. Здесь земная кора растрескивается подобно фарфору. Напряжения накапливаются в ней до тех пор, пока не образуется разрыв и подвижка горных пород. Однако иногда очаги землетрясения находятся на глубинах вплоть до 700 км. По современным представлениям о внутреннем строении Земли на таких глубинах вещество мантии под действием тепла и давления переходит из хрупкого состояния, при котором оно способно разрушаться, в тягучее, пластическое. Везде, где глубокие землетрясения случаются достаточно часто, они «обрисовывают» некоторую наклонную плоскость, начинающуюся вблизи земной поверхности и уходящую в недра Земли до глубины 700 км. Эти плоскости стали называть зонами Вадати – Беньоффа по имени японского сейсмолога Вадати и американского – Беньоффа, которые впервые открыли это явление. Эти зоны привязаны к местам, где сталкиваются плиты. Одна плита изгибается и поддвигается под другую, погружаясь в мантию. Зона глубоких землетрясений как раз и связана с такой опускающейся плитой. Хотя для объяснения глубоких землетрясений выдвинуто множество интересных идей, но в течение 60 лет, прошедших после открытия глубоких землетрясений, они все еще остаются загадкой. До сих пор неясен механизм возникновения очага землетрясения в таких размягченных породах.
Длительность землетрясений.
Продолжительность землетрясений различна, часто число подземных толчков образует рой землетрясений, включающих предшествующие (форшоки) и последующие (афтершоки) толчки. Распределение наиболее сильного толчка (главного землетрясения) внутри роя носит случайный характер. Магнитуда сильнейшего афтершока меньше на 1,2 чем у основного толчка, эти афтершоки сопровождаются своими вторичными сериями последующих толчков.
Техногенные землетрясения
могут быть вызваны подземными ядерными испытаниями, заполнением водохранилищ, добычей нефти и газа методом нагнетания жидкости в скважины, взрывными работами при добыче полезных ископаемых и пр. Менее сильные землетрясения происходят при обвале сводов пещер или горных выработок.
Регистрация землетрясений.
Прибор, записывающий сейсмические колебания, называется сейсмографом, а сама запись сейсмограммой. Сейсмограф состоит из маятника, подвешенного внутри корпуса на пружине, и записывающего устройства.
Одно из первых записывающих устройств представляло собой вращающийся барабан с бумажной лентой. При вращении барабан постепенно смещается в одну сторону, так что нулевая линия записи на бумаге имеет вид спирали. Каждую минуту на график наносятся вертикальные линии отметки времени; для этого используются очень точные часы, которые периодически сверяют с эталоном точного времени. Для изучения близких землетрясений необходима точность маркировки до секунды или меньше.
Во многих сейсмографах для преобразования механического сигнала в электрический используются индукционные устройства, в которых при перемещении инертной массы маятника относительно корпуса изменяется величина магнитного потока, проходящего через витки индукционной катушки. Возникающий при этом слабый электрический ток приводит в действие гальванометр, соединенный с зеркальцем, которое отбрасывает луч света на светочувствительную бумагу записывающего устройства. В современных сейсмографах регистрация колебаний ведется в цифровом виде с использованием компьютеров.
Чем грозит сдвиг литосферных плит?
“Заряженный” стык двух литосферных плит “разрядился”, можно сказать “выстрел” произошел, а значит все самое страшное уже позади. Но действительно ли все закончилось? На самом деле нет. Как мы недавно рассказывали одним толчком землетрясения подобной мощности не ограничиваются. Повторные толчки, или афтершоки, могут длиться на протяжении нескольких дней, месяцев или даже лет. Но, к счастью, их сила с каждым разом ослабевает.
В результате смещения Аравийской и Анатолийской плит, волна землетрясений прокатилась по всему миру
Но больше всего общественность во всем мире напугали сообщения о землетрясениях, которые одновременно стали происходить в самых разных точках планеты, на разных континентах. С чем это связано? После подобных землетрясений возникают сейсмические волны, которые несколько раз обходят Землю. Они могут спровоцировать сейсмическую активность в других регионах, которые совсем не связаны с литосферными плитами, ставшими причиной землетрясения. Но самое неприятное то, что они способны спровоцировать вулканическую активность.
Однако предугадать возможные последствия таких землетрясений ученые не могут. Собственно говоря, даже сами землетрясения предсказать невозможно, не говоря уже о последствиях сейсмических волн. Поэтому остается лишь наблюдать за ситуацией и надеяться на лучшее.
Еще больше интересных материалов вы найдете на нашем ЯНДЕКС.ДЗЕН КАНАЛЕ. Подписывайтесь скорее, чтобы не пропустить самое интересное!
Напоследок напомним, что нынешнее землетрясение в Турции хоть и было чрезвычайно мощным, оно далеко не самое мощное и разрушительное за историю наблюдений. Подробнее узнать о самых разрушительных землетрясениях можно по этой ссылке.
Землетрясения вызывают цунами
Самая высокая волна цунами была зафиксирована в 1958 году на Аляске — она возвысилась на 500 метров, разогналась до 160 километров в час и унесла жизни пяти человек. Об этом у нас есть отдельная статья.
Залив Литуйя (Аляска) после землетрясения и цунами в 1958 году
Если говорить о самом смертоносном цунами, то оно возникло после землетрясения в Индийском океане в 2004 году. Высота волн превышала 15 метров — они достигли берегов Индонезии, Шри-Ланки, юга Индии, Таиланда и других стран. Оно унесло жизни около 300 тысяч людей.
В 2004 году цунами добралось до Таиланда
Продольные и поперечные волны.
На сейсмограммах эти волны появляются первыми. Раньше всего регистрируются продольные волны, при прохождении которых каждая частица среды подвергается сначала сжатию, а затем снова расширяется, испытывая при этом возвратно-поступательное движение в продольном направлении (т.е. в направлении распространения волны). Эти волны называются также Р-волнами, или первичными волнами. Их скорость зависит от модуля упругости и жесткости породы. Вблизи земной поверхности скорость Р-волн составляет 6 км/с, а на очень большой глубине ок. 13 км/с. Следующими регистрируются поперечные сейсмические волны, называемые также S-волнами, или вторичными волнами. При их прохождении каждая частица породы колеблется перпендикулярно направлению распространения волны. Их скорость зависит от сопротивления породы сдвигу и составляет примерно 7/12 от скорости распространения Р-волн.
Поверхностные волны
распространяются вдоль земной поверхности или параллельно ей и не проникают глубже 80160 км. В этой группе выделяются волны Рэлея и волны Лява (названные по именам ученых, разработавших математическую теорию распространения таких волн). При прохождении волн Рэлея частицы породы описывают вертикальные эллипсы, лежащие в очаговой плоскости. В волнах Лява частицы породы колеблются перпендикулярно направлению распространения волн. Поверхностные волны часто обозначаются сокращенно как L-волны. Скорость их распространения составляет 3,24,4 км/с. При глубокофокусных землетрясениях поверхностные волны очень слабые.
Сопутствующие явления.
Иногда подземные толчки сопровождаются хорошо различимым низким гулом, когда частота сейсмических колебаний лежит в диапазоне, воспринимаемом человеческим ухом, иногда такие звуки слышатся и при отсутствии толчков. В некоторых районах они представляют собой довольно обычное явление, хотя ощутимые землетрясения происходят очень редко. Имеются также многочисленные сообщения о возникновении свечения во время сильных землетрясений. Общепринятого объяснения таких явлений пока нет. Цунами (большие волны на море) возникают при быстрых вертикальных деформациях морского дна во время подводных землетрясений. Цунами распространяются в океанах в пределах глубоководных зон океанов со скоростью 400–800 км/ч и могут вызвать разрушения на берегах, удаленных на тысячи километров от эпицентра. У близлежащих к эпицентру берегов эти волны иногда достигают в высоту 30 м.
При многих сильных землетрясениях помимо основных толчков регистрируются форшоки (предшествующие землетрясения) и многочисленные афтершоки (землетрясения, следующие за основным толчком). Афтершоки обычно слабее, чем основной толчок, и могут повторяться в течение недель и даже лет, становясь все реже и реже.
Землетрясения происходят до извержения вулканов
Если землетрясение произошло поблизости какого-либо вулкана, то он скоро может начать извергаться. Дело в том, что подземные толчки возникают не только во время столкновения тектонических плит — иногда они вызваны процессами, протекающими внутри вулканов. Отличить вулканическое землетрясение от тектонического можно по глубине очага — в первому случае толчок фиксируется на небольшой глубине около 2,4 километров, а во втором гораздо глубже. Фиксирование подземных толчков является одним из способов прогнозирования извержений вулканов, о которых мы рассказывали в этом материале.
Извержение вулкана Ньирагонго (Конго)
Вам будет интересно: Странные землетрясения в США могут быть предвестниками извержения вулкана
Интенсивность землетрясений
оценивается в баллах при обследовании района по величине вызванных ими разрушений наземных сооружений или деформаций земной поверхности. Для ретроспективной оценки балльности исторических или более древних землетрясений используют некоторые эмпирически полученные соотношения. В США оценка интенсивности обычно проводится по модифицированной 12-балльной шкале Меркалли.
1 балл. Ощущается немногими особо чувствительными людьми в особенно благоприятных для этого обстоятельствах.
3 балла. Ощущается людьми как вибрация от проезжающего грузовика.
4 балла. Дребезжат посуда и оконные стекла, скрипят двери и стены.
5 баллов. Ощущается почти всеми; многие спящие просыпаются. Незакрепленные предметы падают.
6 баллов. Ощущается всеми. Небольшие повреждения.
8 баллов. Падают дымовые трубы, памятники, рушатся стены. Меняется уровень воды в колодцах. Сильно повреждаются капитальные здания.
10 баллов. Разрушаются кирпичные постройки и каркасные сооружения. Деформируются рельсы, возникают оползни.
12 баллов. Полное разрушение. На земной поверхности видны волны.
В России и некоторых соседних с ней странах принято оценивать интенсивность колебаний в баллах МSК (12-балльной шкалы Медведева Шпонхойера Карника), в Японии в баллах ЯМА (9-балльной шкалы Японского метеорологического агентства).
Интенсивность в баллах (выражающихся целыми числами без дробей) определяется при обследовании района, в котором произошло землетрясение, или опросе жителей об их ощущениях при отсутствии разрушений, или же расчетами по эмпирически полученным и принятым для данного района формулам. Среди первых сведений о произошедшем землетрясении становится известной именно его магнитуда, а не интенсивность. Магнитуда определяется по сейсмограммам даже на больших расстояниях от эпицентра.
Тектонические землетрясения
возникают вследствие внезапного снятия напряжения, например, при подвижках по разлому в земной коре (исследования последних лет показывают, что причиной глубоких землетрясений могут быть и фазовые переходы в мантии Земли, происходящие при определенных температурах и давлениях). Иногда глубинные разломы выходят на поверхность. Во время катастрофического землетрясения в Сан-Франциско 18 апреля 1906 общая протяженность поверхностных разрывов в зоне разлома Сан-Андреас составила более 430 км, максимальное горизонтальное смещение – 6 м. Максимальная зарегистрированная величина сейсмогенных смещений по разлому 15 м.
Землетрясение
– подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии и передающиеся на большие расстояния в виде упругих колебаний. См. также ЗЕМЛЕТРЯСЕНИЯ.
Состав лавы.
Твердые породы, образующиеся при остывании лавы, содержат в основном диоксид кремния, оксиды алюминия, железа, магния, кальция, натрия, калия, титана и воду. Обычно в лавах содержание каждого из этих компонентов превышает один процент, а другие элементы присутствуют в меньшем количестве. Мощность лавовых потоков, как правило, составляет от 3 до 15 м. Более жидкие лавы образуют более тонкие потоки. Когда на поверхности базальтового потока начинается затвердевание, внутренняя часть потока может оставаться в жидком состоянии, продолжая течь и оставляя за собой вытянутую полость, или лавовый тоннель. Поверхность лавового потока бывает ровной и волнистой. Горячая лава, обладающая высокой текучестью, может продвигаться со скоростью более 35 км/ч, однако чаще ее скорость не превышает нескольких метров в час. В медленно движущемся потоке куски застывшей верхней корки могут отваливаться и перекрываться лавой; в результате в придонной части формируется зона, обогащенная обломками. При застывании лавы иногда образуются столбчатые отдельности (многогранные вертикальные колонны диаметром от нескольких сантиметров до 3 м) или трещиноватость, перпендикулярная охлаждающейся поверхности. При излиянии лавы в кратер или кальдеру формируется лавовое озеро, которое со временем охлаждается.


Действующие вулканы земли.
К действующим относятся вулканы, извергавшиеся в историческое время или проявлявшие другие признаки активности (выброс газов и пара). Всего известно примерно 2500 извержений 500 таких вулканов.
Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов. Центры землетрясений располагаются примерно на глубине до 700 км от уровня земной поверхности, т.е. вулканический материал поступает из верхней мантии. На островных дугах он часто имеет андезитовый состав, андезиты по своему составу сходны с континентальной земной корой, в этих районах кора наращивается за счет поступления мантийного вещества. Вулканы, действующие вдоль океанических хребтов (например, Гавайского), извергают материал преимущественно базальтового состава. Эти вулканы, сопряжены с мелкофокусными землетрясениями, глубина которых не превышает 70 км. Поскольку базальтовые лавы встречаются как на материках, так и вдоль океанических хребтов, предполагают, что непосредственно под земной корой существует слой, из которого поступают базальтовые лавы.
Самое сильное землетрясение в истории
Самое разрушительное землетрясение в истории человечества произошло в 1556 году, на территории китайской провинции Шэньси. Считается, что эпицентр этой катастрофы находился в долине реки Вэйхэ — разрушения распространились на 500 километров от центра. В результате этой катастрофы на земле образовались глубокие трещины, дома были разрушены, погибло приблизительно 830 тысяч человек.
Распространение волн во время землетрясения Шэньси в 1556 году
Большое количество жертв во время китайского землетрясения объясняется тем, что Китай всегда был очень плотно заселен. Вдобавок к этому, в давние времена жители пострадавших территорий обустраивали дома прямо в склонах холмов. Наконец, землетрясение началось в 5 утра, когда почти все люди находились дома.
Одной из нерешенных проблем проявления вулканической активности является определение источника тепла, необходимого для локального плавления базальтового слоя или мантии. Такое плавление должно быть узколокализованным, поскольку прохождение сейсмических волн показывает, что кора и верхняя мантия обычно находятся в твердом состоянии. Более того, тепловой энергии должно быть достаточно для плавления огромных объемов твердого материала. Например, в США в бассейне р.Колумбия (штаты Вашингтон и Орегон) объем базальтов более 820 тыс. км3, такие же крупные толщи базальтов встречаются в Аргентине (Патагония), Индии (плато Декан) и ЮАР (возвышенность Большое Кару). Сейчас есть три гипотезы. Одни геологи считают, что плавление обусловлено локальными высокими концентрациями радиоактивных элементов, но такие концентрации в природе кажутся маловероятными, другие предполагают, что тектонические нарушения в форме сдвигов и разломов сопровождаются выделением тепловой энергии. Есть еще одна точка зрения, согласно которой верхняя мантия в условиях высоких давлений находится в твердом состоянии, а когда вследствие трещинообразования давление падает, она плавится и по трещинам происходит излияние жидкой лавы.
Пути сейсмических волн.
Продольные и поперечные волны распространяются в толще Земли, при этом непрерывно увеличивается объем среды, вовлекаемой в колебательный процесс. Поверхность, соответствующая максимальному продвижению волн определенного типа в данный момент, называется фронтом этих волн. Поскольку модуль упругости среды возрастает с глубиной быстрее, чем ее плотность (до глубины 2900 км), скорость распространения волн на глубине выше, чем вблизи поверхности, и фронт волны оказывается более продвинутым вглубь, чем в латеральном (боковом) направлении. Траекторией волны называется линия, соединяющая точку, находящуюся на фронте волны, с источником волны. Направления распространения волн Р и S представляют собой кривые, обращенные выпуклостью вниз (из-за того, что скорость движения волн больше на глубине). Траектории волн Р и S совпадают, хотя первые распространяются быстрее.
Сейсмические станции, находящиеся вдали от эпицентра землетрясения, регистрируют не только прямые волны Р и S, но также волны этих типов, уже отраженные один раз от поверхности Земли РР и SS (или РR1 и SR1), а иногда отраженные дважды РРР и SSS (или РR2 и SR2). Существуют также отраженные волны, которые проходят один отрезок пути как Р-волна, а второй, после отражения, как S-волна. Образующиеся обменные волны обозначаются как РS или SР. На сейсмограммах глубокофокусных землетрясений наблюдаются также и другие типы отраженных волн, например, волны, которые прежде, чем достичь регистрирующей станции, отразились от поверхности Земли. Их принято обозначать маленькой буквой, за которой следует заглавная (например, рR). Эти волны очень удобно использовать для определения глубины очага землетрясения.
Что произошло с тектоническими плитами в Турции
Сейсмологи еще несколько лет назад говорили, что литосферные плиты на территории Турции, фактически, сцеплены. Поэтому землетрясение было лишь делом времени. Как отмечают эксперты Аравийская плита давит на Анатолийскую на протяжении сотен лет, в результате чего напряжение накапливаетя. Так как мощных землетрясений в Турции не было давно, скопилось много энергии.
Когда эта энергия высвободилась, плиты разошлись вдоль разлома протяженностью 150 км, причем в течение нескольких секунд они сместились на расстояние до 3 метров, а в некоторых местах даже больше. То есть Турция, фактически, сдвинулась относительно Сирии на юго-запад, о чем сообщает профессор Карло Доглиони, президент Национального института геофизики и вулканологии.
Сдвиг литосферных плит хорошо виден по деформации железной дороги в Турции
Согласно последним данным итальянских сейсмологов, смещение плит друг относительно друга произошло не только в горизонтальной плоскости, но и вертикальной. Часть территории Турции опустилась на 5-6 метров, в результате чего стране теперь грозит еще и затопление.
Разлом после землетрясения в Турции, сняты из космоса российским спутником «Канопус-В»
Кроме того, на месте разлома образовалось ущелье глубиной порядка 30 метров и шириной около 200 метров. Но, что самое интересное, со спутника зафиксировано движение тектонических плит вдоль линии разлома даже после землетрясения, что настораживает ученых.
По оценкам специалистов, высвободившаяся энергия, вызвавшая землетрясение, по силе равна взрыву 300 средних атомных бомб. Внезапного землетрясения такой мощности на территории Турции еще не было ни разу со времен изучения сейсмологии.
Сейсмические волны.
Колебания, распространяющиеся из очага землетрясения, представляют собой упругие волны, характер и скорость распространения которых зависят от упругих свойств и плотности пород. К упругим свойствам относятся модуль объемной деформации, характеризующий сопротивление сжатию без изменения формы, и модуль сдвига, определяющий сопротивление усилиям сдвига. Скорость распространения упругих волн увеличивается прямо пропорционально квадратному корню значений параметров упругости и плотности среды.
Внутреннее строение Земли
Перед тем, как говорить о причинах землетрясений, нужно разобраться в строении Земли. Наша планета состоит из трех основных слоев: коры, мантии и ядра. Кора является самым верхним слоем и состоит из относительно целостных блоков — литосферных плит. На данный момент ученым известно о существовании восьми крупных, десятках средних и огромном количестве маленьких плит.
Самые крупные литосферные плиты это Американская, Африканская, Антарктическая, Индо-Австралийская, Евразийская, Тихоокеанская и Амурская. Россия располагается на четырех плитах: большая часть страны лежит на Евразийской плите, территория Чукотки расположена на Северо-Американской плите, Побережье Магаданской области и Камчатки находятся на Охотоморской плите, а южные территории Сибири располагаются на Амурской литосферной плите.
Самые большие литосферные плиты и их движение
Литосферные плиты находятся в постоянном движении, потому что буквально плавают в пластичном слое верхней мантии — астеносфере. Это происходит очень медленно, потому что астеносфера хоть и способна течь как жидкость, но обладает крайне низкой вязкостью, а литосферные плиты тяжелые. По расчетам ученых, тектонические плиты движутся относительно друг друга со скоростью до 10 метров в год.
Изображение движения литосферных плит
Твердая оболочка Земли, на которой находятся упомянутые выше плиты, называется литосферой. Научное представление о строении и движении литосферы называется тектоникой плит. Поэтому иногда литосферные плиты называются тектоническими — это одно и то же.
Амплитуда и период
характеризуют колебательные движения сейсмических волн. Амплитудой называется величина, на которую изменяется положение частицы грунта при прохождении волны по сравнению с предшествовавшим состоянием покоя. Период колебаний промежуток времени, за который совершается одно полное колебание частицы. Вблизи очага землетрясения наблюдаются колебания с различными периодами – от долей секунды до нескольких секунд. Однако на больших расстояниях от центра (сотни километров) короткопериодные колебания выражены слабее: для Р-волн характерны периоды от 1 до 10 с, а для S-волн – немного больше. Периоды поверхностных волн составляют от нескольких секунд до нескольких сотен секунд. Амплитуды колебаний могут быть значительными вблизи очага, однако на расстояниях 1500 км и более они очень малы менее нескольких микрон для волн Р и S и менее 1 см – для поверхностных волн.
Последствия землетрясений.
Сильные землетрясения оставляют множество следов, особенно в районе эпицентра: наибольшее распространение имеют оползни и осыпи рыхлого грунта и трещины на земной поверхности. Характер таких нарушений в значительной степени определяется геологическим строением местности. В рыхлом и водонасыщенном грунте на крутых склонах часто происходят оползни и обвалы, а мощная толща водонасыщенного аллювия в долинах деформируется легче, чем твердые породы. На поверхности аллювия образуются просадочные котловины, заполняющиеся водой. И даже не очень сильные землетрясения получают отражение в рельефе местности.
Смещения по разломам или возникновение поверхностных разрывов могут изменить плановое и высотное положение отдельных точек земной поверхности вдоль линии разлома, как это произошло во время землетрясения 1906 в Сан-Франциско. При землетрясении в октябре 1915 в долине Плезант в Неваде на разломе образовался уступ длиной 35 км и высотой до 4,5 м. При землетрясении в мае 1940 в долине Импириал в Калифорнии подвижки произошли на 55-километровом участке разлома, причем наблюдались горизонтальные смещения до 4,5 м. В результате Ассамского землетрясения (Индия) в июне 1897 в эпицентральной области высота местности изменилась не менее, чем на 3 м.
Значительные поверхностные деформации прослеживаются не только вблизи разломов и приводят к изменению направления речного стока, подпруживанию или разрывам водотоков, нарушению режима источников воды, причем некоторые из них временно или навсегда перестают функционировать, но в то же время могут появиться новые. Колодцы и скважины заплывают грязью, а уровень воды в них ощутимо меняется. При сильных землетрясениях вода, жидкая грязь или песок могут фонтанами выбрасываться из грунта.
При смещении по разломам происходят повреждения автомобильных и железных дорог, зданий, мостов и прочих инженерных сооружений. Однако качественно построенные здания редко разрушаются полностью. Обычно степень разрушений находится в прямой зависимости от типа сооружения и геологического строения местности. При землетрясениях умеренной силы могут происходить частичные повреждения зданий, а если они неудачно спроектированы или некачественно построены, то возможно и их полное разрушение.
При очень сильных толчках могут обрушиться и сильно пострадать сооружения, построенные без учета сейсмической опасности. Обычно не обрушиваются одно- и двухэтажные постройки, если у них не очень тяжелые крыши. Однако бывает, что они смещаются с фундаментов и часто у них растрескивается и отваливается штукатурка.
Дифференцированные движения могут приводить к тому, что мосты сдвигаются со своих опор, а инженерные коммуникации и водопроводные трубы разрываются. При интенсивных колебаниях уложенные в грунт трубы могут «складываться», всовываясь одна в другую, или выгибаться, выходя на поверхность, а железнодорожные рельсы деформироваться. В сейсмоопасных районах сооружения должны проектироваться и строиться с соблюдением строительных норм, принятых для данного района в соответствии с картой сейсмического районирования.
В густонаселенных районах едва ли не больший ущерб, чем сами землетрясения, наносят пожары, возникающие в результате разрыва газопроводов и линий электропередач, опрокидывания печей, плит и разных нагревательных приборов. Борьба с пожарами затрудняется из-за того, что водопровод оказывается поврежденным, а улицы непроезжими вследствие образовавшихся завалов.
При землетрясении в очаге частицы горных пород перемещаются и передают колебания в виде акустической волны. Акустические волны, которые возникают при землетрясении, называются сейсмическими. Сейсмические волны возбуждаются землетрясением или крупным взрывом. Различают несколько типов сейсмических волн: волны сжатия, волны сдвига и поверхностные волны.
Волны сжатия, Р-волны, или продольные волны, заставляют частицы пород колебаться подобно спиральной пружине. Р-волны вызывают колебания частиц вдоль направления распространения волны путем чередования участков сжатия и разрежения в породах. P-волны могут проникать в любое место земного шара.
Волны сдвига, S-волны, или поперечные сейсмические волны заставляют частицы пород колебаться перпендикулярно направлению распространения волны подобно вибрирующей гитарной струне. S-волны распространяются только в материале, обладающем упругостью, и поэтому не в состоянии проходить через жидкое ядро Земли. Благодаря этому явлению в 1906 английский сейсмолог Олдгем, наблюдая за распространением S-волн, сделал вывод о существовании земного ядра. Скорость волн зависит от типа породы, в которой они распространяются, скорость Р-волн примерно в 2 раза больше скорости S-волн. Именно продольные волны первыми регистрируются сейсмографами, поэтому сейсмологи называют их первичными (Primary) P-волнами, а поперечные – вторичными (Secondary) – S-волнами. Третий тип сейсмических волн – поверхностные или длинные (Long) – L-волны. Они распространяются по земной поверхности подобно морским волнам. Поверхностные волны движутся примерно в 2 раза медленнее, чем S-волны, но отличаются наибольшей амплитудой. Поверхностные волны и вызывают самые сильные разрушения, сотрясая земную поверхность.
Лава
– раскаленная жидкая или очень вязкая, преимущественно силикатная масса, изливающаяся на поверхность Земли при извержениях вулканов, а затем затвердевающая. Лава может изливаться из основного вершинного кратера, бокового кратера на склоне вулкана или из трещин, связанных с вулканическим очагом – резервуар магмы, находящийся в земной коре или верхней мантии Земли и питающий вулкан. Лава стекает вниз по склону в виде лавового потока. При застывании лавы образуются эффузивные горные породы.
Землетрясения происходят и в России
Как и во многих других частях мира, землетрясения в России происходят в местах стыков тектонических плит. Особенно сейсмически активными зонами считаются Кавказ, Поволжье, Алтай, Западная Сибирь, Восточная Сибирь и Камчатка. Сильные подземные толчки фиксируются 5-6 раз в столетие — они уносят много жизней и даже разрушают целые населенные пункты. Например, в 1995 году в поселке Нефтегорск (Сахалинская область) произошло землетрясение магнитудой 7,6, которое уничтожило поселение за 17 секунд. Из 3197 жителей поселка погибло 2040 человек.
Иногда землетрясения происходят даже в Москве и Санкт-Петербурге! О том, как такое возможно и насколько они разрушительны, вы можете узнать тут.
Нефтегорск после землетрясения
Стоит отметить, что в будущем в России могут начать образовываться торнадо — атмосферные вихри, которые обычно разрушают все на своем пути в американском штате Техас. Почему они могут появиться у нас, рассказывала моя коллега Любовь Соковикова — вот ссылка.
Прогноз землетрясений.
Для повышения точности прогноза землетрясений необходимо лучше представлять механизмы накопления напряжений в земной коре, крипа и деформаций на разломах, выявить зависимости между тепловым потоком из недр Земли и пространственным распределением землетрясений, а также установить закономерности повторяемости землетрясений в зависимости от их магнитуды.
Во многих районах земного шара, где существует вероятность возникновения сильных землетрясений, ведутся геодинамические наблюдения с целью обнаружения предвестников землетрясений, среди которых заслуживают особого внимания изменения сейсмической активности, деформации земной коры, аномалии геомагнитных полей и теплового потока, резкие изменения свойств горных пород (электрических, сейсмических и т.п.), геохимические аномалии, нарушения водного режима, атмосферные явления, а также аномальное поведение насекомых и других животных (биологические предвестники). Такого рода исследования проводятся на специальных геодинамических полигонах (например, Паркфилдском в Калифорнии, Гармском в Таджикистане и др.). С 1960 работает множество сейсмических станций, оборудованных высокочувствительной регистрирующей аппаратурой и мощными компьютерами, позволяющими быстро обрабатывать данные и определять положение очагов землетрясений.
Вулканические землетрясения
происходят вследствие резких перемещений магматического расплава в недрах Земли или в результате возникновения разрывов под влиянием этих перемещений.
Изучение землетрясений.
Изучением землетрясений занимается сейсмология. Сейсмические волны, возникающие при землетрясениях, используются также для изучения внутреннего строения Земли, достижения в этой области послужили основой для развития методов сейсмической разведки. Наблюдения за землетрясениями ведутся с древнейших времен. Детальные исторические описания, надежно свидетельствующие о землетрясениях с сер. 1 тыс. до н.э., даны японцами. Большое внимание сейсмичности уделяли и античные ученые – Аристотель и др. Систематические инструментальные наблюдения, начатые во 2-ой пол. 19 в., привели к выделению сейсмологии в самостоятельную науку (Б.Б.Голицын, Э.Вихерт, Б.Гутенберг, А.Мохоровичич, Ф.Омори и др.).
Возникновение очага землетрясения.
Напряжение внутри земной коры растет до тех пор, пока не превысит прочности самих пород. Пласты горных пород разрушаются и резко смещаются, такое резкое смещение пород называется подвижкой. Вертикальные подвижки приводят к резкому опусканию или поднятию пород. Обычно смещение составляет лишь несколько сантиметров, но энергия, выделяемая при перемещении миллиардов тонн породы даже на малое расстояние, огромна. Накопленное напряжение в месте подвижки снимается.
Землетрясения часто описывают как мгновенные события, что вполне справедливо в масштабе Земли, подвижка продолжается в течение некоторого интервала времени. Точка, в которой начинается подвижка, называется очагом, фокусом или гипоцентром землетрясения. Точка на земной поверхности, расположенная непосредственно над очагом, называется эпицентром. Здесь сила подземных толчков достигает наибольшей величины. Фокус землетрясения может находиться на разной глубине, поэтому землетрясения разделяются на глубокофокусные (очаг землетрясения на глубине 300–700 км), промежуточные (глубина очага 55–300 км) и мелкофокусные (очаг от поверхности менее 55–60 км.
Фонарь, освещающий недра
«Так работает кумуляция — усиление энергетики упругой сейсмической волны, а в качестве усилителя выступает сама наша Земля. Мы назвали это эффектом сейсмического эха, — говорит Завьялов. — Понятно, что усиление волны может вызвать повторные толчки. Такое и происходит после сильных землетрясений в 40% случаев. Поэтому у нас была такая практическая рекомендация: через три часа после землетрясения спасателям и всем, кто там ведёт работы, надо их приостанавливать и быть готовыми к возможному афтершоку. Новый толчок может привести к новым разрушениям, обрушениям конструкций уже разрушенных зданий, где работают спасатели.
Как мы знаем, первое землетрясение в Турции 6 февраля случилось в 4:17 утра, а примерно через 9 часов было второе. Возможно, оно было вызвано третьим оборотом сейсмической волны вокруг Земли».
К сожалению, знание о том, что эффект сейсмического эха существует, не позволяет точно предсказать, где это эхо спровоцирует очередное землетрясение. Пока у учёных нет настолько детального представления о строении недр нашей планеты, чтобы можно было создать адекватные компьютерные модели. Но каждое новое землетрясение добавляет данных в копилку знаний, и когда-нибудь, возможно, подробные «карты подземелья» будут построены, и поведение сейсмических волн, результат их воздействия на земную кору станет более предсказуемым.
Однозначную связь между землетрясениями трудно установить. А ведь, помимо упругих волн, которые распространяются в земной коре очень быстро, есть ещё медленные деформационные волны. Они способны менять деформацию в области очага потенциального землетрясения. И это более отдалённые последствия произошедших землетрясений, которые тоже хотелось бы учитывать».

Отражение и преломление.
Встречая на своем пути слои пород с отличающимися свойствами, сейсмические волны отражаются или преломляются подобно тому, как луч света отражается от зеркальной поверхности или преломляется, переходя из воздуха в воду. Любые изменения упругих характеристик или плотности материала на пути распространения сейсмических волн заставляют их преломляться, а при резких изменениях свойств среды часть энергии волн отражается (см. рис.).
Географическое распространение землетрясений.
Большинство землетрясений сосредоточено в двух протяженных, узких зонах. Одна из них обрамляет Тихий океан, а вторая тянется от Азорских о-вов на восток до Юго-Восточной Азии.
Тихоокеанская сейсмическая зона проходит вдоль западного побережья Южной Америки. В Центральной Америке она разделяется на две ветви, одна из которых следует вдоль островной дуги Вест-Индии, а другая продолжается на север, расширяясь в пределах США, до западных хребтов Скалистых гор. Далее эта зона проходит через Алеутские о-ва до Камчатки и затем через Японские о-ва, Филиппины, Новую Гвинею и острова юго-западной части Тихого океана к Новой Зеландии и Антарктике.
Вторая зона от Азорских о-вов простирается на восток через Альпы и Турцию. На юге Азии она расширяется, а затем сужается и меняет направление на меридиональное, следует через территорию Мьянмы, острова Суматра и Ява и соединяется с циркумтихоокеанской зоной в районе Новой Гвинеи.
Выделяется также зона меньшего размера в центральной части Атлантического океана, следующая вдоль Срединно-Атлантического хребта.
Существует ряд районов, где землетрясения происходят довольно часто. К ним относятся Восточная Африка, Индийский океан и в Северной Америке долина р.Св. Лаврентия и северо-восток США.
По сравнению с мелкофокусными глубокофокусные землетрясения имеют более ограниченное распространение. Они не были зарегистрированы в пределах Тихоокеанской зоны от южной Мексики до Алеутских о-вов, а в Средиземноморской зоне к западу от Карпат. Глубокофокусные землетрясения характерны для западной окраины Тихого океана, Юго-Восточной Азии и западного побережья Южной Америки. Зона с глубокофокусными очагами обычно располагается вдоль зоны мелкофокусных землетрясений со стороны материка.
«А там уж природа сама решает, как поступить»
Взглянем на Курилы и Камчатку, самый сейсмически активный регион нашей страны. 7 февраля (на следующий день после Турции) у Курильских островов произошло землетрясение магнитудой 5,8. 13 февраля случилось ещё одно, магнитудой 5,5. Эпицентр находился в 23 километрах от острова Симушир. Сотрудники Единой геофизической службы РАН оценили это землетрясение как интенсивное.
15 февраля тряхнуло у берегов Камчатки. В региональном управлении МЧС сообщили, что очаг был в 42 километрах северо-восточнее посёлка Усть-Камчатск. Магнитуда — 5,3.
«Что такое землетрясение? Это подвижка в недрах Земли одного блока относительно другого. В результате этой подвижки возникает упругая волна. Она распространяется во все стороны, претерпевая при этом преломления, отражения, затухания и пр. И теоретически — да, каждое новое землетрясение оказывает влияние на последующие сейсмические события. Вопрос в том, насколько оно велико, — рассуждает заведующий лабораторией сейсмической опасности Института физики Земли им. О. Ю. Шмидта РАН, доктор физико-математических наук Алексей Завьялов. — Чем сильнее было землетрясение, тем больше его влияние, тем сильнее добавка в напряжённые области земной коры. Пришла такая волна в сейсмически неустойчивую зону — и добавила толику энергии. Если там созрел очаг, может произойти землетрясение».
Учёный объясняет: любая волна имеет период и амплитуду. Чем дальше уходит она от своего источника, тем меньше становится амплитуда. И тем меньше энергии она несёт. Но какая-то энергия всё же сохраняется. «А там уж природа сама решает, как ей поступить», — добавляет сейсмолог.

Как работает шкала Рихтера
Для оценки мощности землетрясений используется шкала Рихтера. Она была создана в 1935 году американским сейсмологом Чарльзом Рихтером и используется по сей день. Величина, которой характеризуют силу подземных толчков — это магнитуда.
Американский сейсмолог Чарльз Фрэнсис Рихтер
Шкала Рихтера состоит из условных единиц от 1 до 9,5. Это логарифмическая шкала, а значит каждая дополнительная единица означает увеличение силы землетрясения в 10 раз. Допустим, в новостях сказали, что в какой-то части Земли произошел толчок магнитудой 4. В феврале 2023 года в Турции произошло землетрясение магнитудой 7,7 — это значит, что оно было в 5000 раз мощнее по амплитуде и в 350 000 раз сильнее по выбросу энергии.
Землетрясение магнитудой 1 никто не заметит, но уже после 5 начинаются разрушения
Некоторые люди путают шкалу Рихтера со шкалой интенсивности землетрясения в баллах. Важно понимать, что Чарльз Рихтер создал шкалу для определения магнитуд, которые вычисляются по колебаниям, регистрируемым сейсмографом — наибольшее значение в этой шкале равно 9,5. Шкала интенсивности землетрясения в баллах же основана на тяжести последствий подземного толчка вроде наличия разрушенных зданий и состоит из 7 или 12 делений в зависимости от страны.
Шкала интенсивности землетрясения в России состоит из 12 баллов и называется шкалой Медведева — Шпонхойера — Карника
Исходя из этого, правильно говорить «Произошло землетрясение магнитудой 7,7». Вариант «произошло землетрясение магнитудой 7,7 баллов» неправильный.
Предсказать землетрясение невозможно
Несмотря на все старания сейсмологов, на сегодняшний день не существует способа предсказать землетрясение с точностью до дня и даже месяца. Однако, есть системы, которые способны предотвращать ложные тревоги.
Например, в США была разработана система предупреждения о землетрясениях ShakeAlert. Она работает с 2021 года и оценивает риск подземных толчков в штатах Калифорния, Орегон и Вашингтон — в будущем ее хотят начать использовать и в других сейсмически активных районах. Как и многие другие подобные системы, она фиксирует слабые толчки и предупреждает о том, что в ближайшее время могут возникнуть сильные. В это время люди имеют возможность выбежать в безопасные места, лечь прикрыв голову и так далее.
Система ShakeAlert предупреждает людей о землетрясениях
Предсказать землетрясение можно, наблюдая за животными. Специалисты уже давно заметили, что перед сильными подземными толчками муравьи покидают свои жилища, жабы покидают пруды, а птицы сбиваются в кучи или кидаются в воду. Подробности вы можете почитать тут.
Ужасное землетрясение в Турции было предсказано нидерландским сейсмологом Фрэнком Хугербитсом 3 февраля, за три дня до катастрофы. В своих соцсетях он опубликовал информацию о том, что одновременно в Турции, Сирии, Иордании и Ливане произойдет землетрясение магнитудой 7,5. Информацию о том, как он это сделал, найти не удалось.
Сейсмографы.
Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы – сейсмографы. В наше время это сложные электронные устройства. У современных сейсмографов были свои предшественники. Первый сейсмограф появился в 132 в Китае. Настоящие сейсмографы появились в 1890-е. В современном сейсмографе используется свойство инерции (свойство сохранять первоначальное состояние покоя или равномерного движения). Впервые инструментальные наблюдения появились в Китае, где в 132 Чан Хен изобрел сейсмоскоп, представлявший собой искусно сделанный сосуд. На внешней стороне сосуда с размещенным внутри маятником по кругу были выгравированы головы драконов, держащих в пасти шарики. При качании маятника от землетрясения один или несколько шариков выпадали в открытые рты лягушек, размещенных у основания сосудов таким образом, чтобы лягушки могли их проглотить (рис. 9_2). Современный сейсмограф представляет собой комплект приборов, регистрирующих колебания грунта при землетрясении и преобразующих их в электрический сигнал, записываемый на сейсмограммах в аналоговой и цифровой форме. Однако, по-прежнему, основным чувствительным элементом служит маятник с грузом.
Интенсивность землетрясений.
Интенсивность проявления землетрясений на поверхности измеряется в баллах и зависит от глубины очага и магнитуды землетрясения, служащей мерой его энергии.
Интенсивность землетрясений оценивается в сейсмических баллах. (таблица)
Сейсмические волны проходят внутри земного шара в тех местах, которые недоступны наблюдению. Все, что они встречают на пути, так или иначе их изменяет. Поэтому анализ сейсмических волн помогает выяснить внутреннее строение Земли.
При помощи сейсмографа можно оценить энергию землетрясения. Cсравнительно слабые землетрясения высвобождают энергию порядка 10 000 кг/м, т.е. достаточную, чтобы поднять груз весом 10 тонн на высоту 1 м. Этот энергетический уровень принимается за ноль, землетрясению имеющему в 100 раз больше энергии соответствует 1, еще в 100 раз более сильному соответствуют 2 единицы шкалы. Такая шкала называется шкалой Рихтера в честь известного американского сейсмолога из Калифорнии Ч. Рихтера. Число в такой шкале называется магнитудой и обозначается М. В самой шкале верхний предел не предусмотрен, по этой причине шкалу Рихтера называют открытой. В действительности сама Земля создает практический верхний предел. Сильнейшие из зарегистрированных землетрясений имели магнитуду 8,9. Таких землетрясений с начала инструментальных наблюдений зарегистрировано два, оба под океаном. Одно произошло в 1933 у берегов Японии, другое – в 1906 у берегов Эквадора. Таким образом, магнитуда землетрясения характеризует количество энергии, выделяемой очагом во все стороны. Эта величина не зависит ни от глубины очага, ни от расстояния до пункта наблюдения. Сила проявления землетрясения зависит не только от магнитуды, но и от глубины очага (чем ближе очаг к поверхности, тем больше сила его проявления), от качества грунтов (чем более рыхлый и неустойчивый грунт, тем больше сила проявления). Имеет значение, конечно, и качество наземных построек. Сила проявления землетрясения на земной поверхности определяется по шкале Меркалли в баллах. Баллы отмечаются цифрами от I до XII (цифры римские, чтобы не было путаницы с магнитудой).
Параметры землетрясений.
Очаги землетрясений располагаются на глубинах до 700 км, но большая часть (3/4) сейсмической энергии выделяется в очагах, находящихся на глубине до 70 км. Размер очага катастрофических землетрясений может достигать 100 × 1000 км. Его положение и место начала перемещения масс (гипоцентр) определяют путем регистрации сейсмических волн, возникающих при землетрясениях (у слабых землетрясений очаг и гипоцентр совпадают). Проекция гипоцентра на земную поверхность именуется эпицентром. Вокруг него располагается область наибольших разрушений (эпицентральная, или плейстосейстовая, область)
В Австралии меньше всего землетрясений
Одно из немногих мест, где почти не происходят землетрясения — это Австралия. Дело в том, что она располагается посередине Австралийской литосферной плиты, вдали от ее границ.
Австралия находится посередине собственной литосферной плиты
Однако, иногда подземные толчки регистрируются и там. В 2021 году землетрясение произошло в австралийском штате Виктория — оно было магнитудой 5,9 и привело к гибели одного человека. Причиной подземного толчка стало движение в Разломе Губернатора, который находится внутри тектонической плиты. Такие землетрясения очень редки и называются внутриплитными.
Последствия австралийского землетрясения в 2021 году
Магнитуда землетрясений
обычно определяется по шкале, основанной на записях сейсмографов. Эта шкала известна под названием шкалы магнитуд, или шкалы Рихтера (по имени американского сейсмолога Ч.Ф.Рихтера, предложившего ее в 1935). Магнитуда землетрясения безразмерная величина, пропорциональная логарифму отношения максимальных амплитуд определенного типа волн данного землетрясения и некоторого стандартного землетрясения. Существуют различия в методах определения магнитуд близких, удаленных, мелкофокусных (неглубоких) и глубоких землетрясений. Магнитуды, определенные по разным типам волн, отличаются по величине. Землетрясения разной магнитуды (по шкале Рихтера) проявляются следующим образом:
2 самые слабые ощущаемые толчки;
41/2 самые слабые толчки, приводящие к небольшим разрушениям;
6 умеренные разрушения;
81/2 самые сильные из известных землетрясений.
В чем особенность «горизонтальных» землетрясений?
Для характеристики землетрясений имеет значение и такой фактор, как величина ускорения. В горизонтальном направлении ускорение всегда выше, чем в вертикальном. Так, например, 26 апреля 1966 года масштабное землетрясение магнитудой 5,2 балла произошло в центре Ташкента. В нем преобладали вертикальные, а не горизонтальные сейсмические колебания, которые ученые считают наиболее опасными. Благодаря этому в городе-миллионнике было относительно небольшое число жертв (8 погибших и несколько сотен травмированных).

Причина землетрясения в Турции
Турция тоже располагается в сейсмически опасной зоне — под ней располагаются Евразийская, Анатолийская, Африканская и Арабская тектонические плиты. Причина землетрясения в Турции в 2023 году заключается в том, что африканская плита надавила на аравийскую и она двинулась на север. После этого она начала двигаться по Восточно-Анатолийскому разлому, в результате чего и произошло мощное землетрясение. Ранее ученые считали, что землетрясение в этой области очень маловероятно, что и стало одной причин больших потерь — люди попросту не были готовы к этому.
Движение литосферных плит под Турцией
После первого подземного толчка было зафиксировано еще 285 афтершоков магнитудой от 3 до 6. Они ощущались не только в Турции, но и других соседних странах.
Об особенностях шкалы Рихтера, сейсмически опасных местах России и других интересных подробностях на тему землетрясений вы можете почитать тут.
