Живое фото литосферных плит

Как известно, сильные землетрясения – это одна и самых опасных природных стихий. Они почти всегда приводят к многочисленным человеческим жертвам. Недавнее событие в Турции и Сирии показало, что в ряде регионов планеты люди в буквальном смысле живут на пороховой бочке. На самом деле таких сейсмоопасных районов в мире немного, но о них стоит знать тем, кто решил переселиться в незнакомый регион на ПМЖ.


Живое фото литосферных плит

Живое фото литосферных плит

Следы движений литосферы сохраняются на века

Наша Земля состоит из множества слоев, нагромождающихся друг на друга. Однако лучше всего нам известны земная кора и литосфера. Это не удивляет — ведь мы не только обитаем на них, но и черпаем из глубин большинство доступных нам природных ресурсов. Но еще верхние оболочки Земли сохраняют миллионы лет истории нашей планеты и всей Солнечной системы.

Литосферные плиты движутся очень медленно — они наползают друг друга со скоростью 1–6 см/год, и отдаляются максимально на 10-18 см/год. Но именно взаимодействие между материками создает геологическую активность Земли, ощутимую на поверхности — извержения вулканов, землетрясения и образование гор всегда происходят в зонах контакта литосферных плит.

Однако есть исключения — так называемые горячие точки, которые могут существовать и в глубине литосферных плит. В них расплавленные потоки вещества астеносферы прорываются наверх, проплавляя литосферу, что приводит к повышенной вулканической активности и регулярным землетрясениям. Чаще всего это происходит неподалеку от тех мест, где одна литосферная плита наползает на другую — нижняя, вдавленная часть плиты погружается в мантию Земли, повышая тем самым давление магмы на верхнюю плиту. Однако сейчас ученые склоняются к той версии, что «утонувшие» части литосферы расплавляются, повышая давление в глубинах мантии и создавая тем самым восходящие потоки. Так можно объяснить аномальную отдаленность некоторых горячих точек от тектонических разломов.

Землетрясения:  Представляем страны, наиболее подверженные землетрясениям: узнайте сейчас


Живое фото литосферных плит

Океаническая и континентальная кора Земли

Взаимодействие плит также приводит к формированию двух различных типов земной коры — океанической и континентальной. Поскольку в океанах, как правило, находятся стыки различных литосферных плит, их кора постоянно изменяется — разламывается или поглощается другими плитами. На месте разломов возникает непосредственный контакт с мантией, откуда поднимается раскаленная магма. Остывая под воздействием воды, она создает тонкий слой из базальтов — основной вулканической породы. Таким образом, океаническая кора полностью обновляется раз в 100 миллионов лет — самые старые участки, которые находятся в Тихом океане, достигают максимального возраста в 156–160 млн лет.

Важно! Океаническая кора — это не вся та земная кора, что находится под водой, а лишь ее молодые участки на стыке материков. Часть континентальной коры находится под водой, в зоне стабильных литосферных плит.

Континентальная кора, напротив, находится на стабильных участках литосферы — ее возраст на отдельных участках превышает 2 миллиарда лет, а некоторые минералы зародились вместе с Землей! Отсутствие активных разрушительных процессов позволило развиться мощному слою осадочных пород, а также сохранить прослойки разных эпох развития планеты. Это позволило также создать метаморфические вещества — минералы, сформированные за счет попадания осадочных или магматических пород в непривычные условия. Яркими примерами таких минералов являются алмазы.

Еще одна черта, которая отличает Землю от других планет — это разнообразие на ней разнотипных ландшафтов. Конечно, свою невероятно большую роль сыграли воздух и вода, о чем мы расскажем немного позже. Но даже основные формы планетарного ландшафта нашей планеты отличаются от той же Луны. Моря и горы нашего спутника — это котлованы от бомбардировки метеоритами. А на Земле они образовались в результате сотен и тысяч миллионов лет движения литосферных плит.


Живое фото литосферных плит

О плитах вы уже наверняка слышали — это громадные устойчивые фрагменты литосферы, которые дрейфуют по текучей астеносфере, словно битый лед по реке. Однако между литосферой и льдом есть два главных отличия:

Так, движущей силой дрейфа литосферных плит является конвекция астеносферы, основной части мантии — более горячие потоки от земного ядра поднимаются к поверхности, когда холодные опускаются обратно вниз. Учитывая то, что материки различаются в размерах, и рельеф их нижней стороны зеркально отражает неровности верхней, движутся они также неравномерно и непостоянно.

За миллиарды лет движения литосферных плит они неоднократно сливались в суперконтиненты, после чего снова разделялись. В ближайшем будущем, через 200– 300 миллионов лет, тоже ожидается образование суперконтинента под именем Пангея Ультима. Рекомендуем посмотреть видео в конце статьи — там наглядно показано, как мигрировали литосферные плиты за последние несколько сотен миллионов лет. Кроме того, силу и активность движения материков определяет внутренний нагрев Земли — чем он выше, тем сильнее расширяется планета, и тем быстрее и свободнее движутся литосферные плиты. Однако с начала истории Земли ее температура и радиус постепенно снижаются.

Границы литосферных плит весьма условны — одни части литосферы тонут под другими, а некоторые, как Тихоокеанская плита, вообще скрыты под водой. Геологи сегодня насчитывают 8 основных плит, которые покрывают 90 процентов всей площади Земли:


Живое фото литосферных плит

Карта литосферных плит

Такое разделение появилось недавно — так, Евразийская плита еще 350 миллионов лет назад состояла из отдельных частей, во время слияния которых образовались Уральские горы, одни из самых древних на Земле. Ученые по сей день продолжают исследование разломов и дна океанов, открывая новые плиты и уточняя границы старых.

Ранее считалось, что поверхность Земли статичная и жесткая. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов. Что об этом известно?

Читайте «Хайтек» в

Недра Земли можно делить на слои по их механическим (в частности реологическим) или химическим свойствам. По механическим свойствам выделяют литосферу, астеносферу, мезосферу, внешнее ядро и внутреннее ядро. По химическим свойствам Землю можно разделить на земную кору, верхнюю мантию, нижнюю мантию, внешнее ядро и внутреннее ядро.

Центральная, наиболее глубокая часть планеты Земля, геосфера, находящаяся под мантией Земли и, предположительно, состоящая из железо-никелевого сплава с примесью других сидерофильных элементов. Глубина залегания — 2 900 км.

Мантия Земли простирается до глубины 2 890 км, что делает ее самым толстым слоем Земли. Давление в нижней мантии составляет около 140 ГПа (1,4·106 атм).

Мантия состоит из силикатных пород, богатых железом и магнием по отношению к вышележащей коре. Высокие температуры в мантии делают силикатный материал достаточно пластичным, чтобы могла существовать конвекция вещества в мантии, выходящего на поверхность через разломы в тектонических плитах.

Толщина земной коры может быть от 5 до 70 км в глубину от поверхности. Самые тонкие части океанической коры, которые лежат в основе океанических бассейнов (5–10 км), состоят из плотной железо-магниевой силикатной породы, такой как базальт.

В нашем материале речь пойдет в верхней части строения Земли: о литосферных плитах.

Как устроены литосферные плиты?

Существует два принципиально разных вида земной коры — кора континентальная и кора океаническая. Некоторые литосферные плиты сложены исключительно океанической корой, другие состоят из блока континентальной коры, впаянного в кору океаническую.

Суммарная мощность (толщина литосферы) океанической литосферы меняется в пределах от 2–3 км в районе рифтовых зон океанов до 80–90 км вблизи континентальных окраин. Толщина континентальной литосферы достигает 200–220 км.

Литосферные плиты постоянно меняют свои очертания, они могут раскалываться в результате рифтинга и спаиваться, образуя единую плиту в результате коллизии. Литосферные плиты также могут тонуть в мантии планеты, достигая глубины внешнего ядра.

С другой стороны, разделение земной коры на плиты неоднозначно, и по мере накопления геологических знаний выделяются новые плиты, а некоторые границы плит признаются несуществующими. Поэтому очертания меняются со временем и в этом смысле. Особенно это касается малых плит, в отношении которых геологами предложено множество кинематических реконструкций, зачастую взаимно исключающих друг друга.

Скорость горизонтального движения литосферных плит в наше время варьируется от 1 до 6 см в год (скорость раздвигания плит — от 2 до 12 см в год). Скорость раздвигания плит от Срединно-Атлантического хребта в северной части его составляет 2,3 см в год, а в южной части — 4 см в год.

Наиболее быстро раздвигаются плиты вблизи Восточно-Тихоокеанского хребта у острова Пасхи — их скорость 18 см в год. Медленнее всего раздвигаются плиты в Аденском заливе и Красном море — со скоростью 1–1,5 см в год.


Живое фото литосферных плит

Типы столкновений литосферных плит:

Граница столкновения проходит между океанической и континентальной плитой. Плита с океанической корой подвигается под континентальную плиту. Примеры столкновения: плита Наска с Южноамериканской плитой и плита Кокос с Североамериканской плитой.

Одна из плит подвигается под другую — ту, на которой находится группа островов. Примеры столкновения: Североамериканская плита с Охотской плитой, с Амурской плитой, с Филиппинской плитой, с Индо-Австралийской плитой; Южноамериканская плита с Карибской плитой.

Тип столкновения, когда ни одна из плит не уступает другой и они обе образуют горы. Примеры: Индостанская плита с Евразийской плитой.

Как двигаются литосферные плиты?

Согласно современному научному подходу к движению плит, земная кора состоит из относительно целостных блоков — литосферных плит, которые находятся в постоянном движении относительно друг друга.

При этом в зонах расширения (срединно-океанических хребтах и континентальных рифтах) в результате спрединга (англ. seafloor spreading — растекание морского дна) образуется новая океаническая кора, а старая поглощается в зонах субдукции.

Тепловая конвекция в веществе мантии возникает как эффективный механизм передачи тепловой энергии из ядра Земли и представляет собой конвективные ячейки размером до нескольких тысяч километров. Над восходящими потоками мантийного вещества, то есть горячими и менее плотными, располагаются зоны спрединга океанского дна.

Нисходящие струи остывшего и более плотного мантийного вещества увлекают за собой литосферные плиты в зонах субдукции. Движение плит осуществляется за счет вязкого сцепления вещества верхней мантии, находящегося в конвективном движении, с неровной подошвой литосферы.

Современные движения литосферных плит фиксируются несколькими методами, самыми распространенными из которых являются методы космической геодезии. Современные GPS-приемники способны фиксировать перемещения плит с точностью до долей миллиметра в год.

Последствия движения литосферных плит также можно наблюдать в сейсмодислокациях — нарушениях сплошности горных пород, возникающих в результате землетрясений, которые, в свою очередь, являются следствием мгновенного снятия напряжений в земной коре.

Известный пример сейсмодислокации — забор на ферме в Калифорнии, неподалеку от Сан-Франциско, разделенный на две части, сдвинутые вдоль разлома Сан-Андреас относительно друг друга на несколько метров.

Модель тектоники плит на поверхности вулканического лавового озера

Более 90% поверхности Земли в современную эпоху покрыто восьмью крупнейшими литосферными плитами:

Что ученые узнали о теории тектоники плит?

Ученый Брэдфорд Фоули из Пенсильванского университета США уверен, что поверхность Земли нельзя считать статичной, ведь она постоянно взволнована. Более того, по мнению специалиста, тектоника действует правильно, расставляя все на свои места. Разломы земной коры также являются результатом взаимодействия подземных плит.

На протяжении веков наука считала, что поверхность Земли, ее крайний слой статичен и жесток. Он не движется и не изменяется. Однако появившаяся теория тектоники плит изменила все понимание почвенного образования. Она явно указывает на постоянное движение поверхности планеты. И доказательством тому служат землетрясения, извержения вулканов, образование гор и вулканических бассейнов.

Все эти события так или иначе связаны с горячими недрами Земли. Все знакомые нам пейзажи, которые есть на планете, являются продуктами эонного цикла, в которого планета занята постоянным усовершенствованием себя.

Тектоника плит сегодня описывает весь внешний слой Земли. Он занимает толщину около 100 км и разбивается на своеобразные паззлы из плит породы, несущей континенты и морское дно. При этом пластины, образующиеся в процессе этого движения, опускаются вглубь планеты. Этот цикл, как заявляют ученые, создает многие геологические чудеса, но он же является и причиной многих стихийных бедствий на нашей планете.

Он связывает между собой многие несовместимые вещи: спрединг морского дна и магнитные полосы в местах формирования землетрясений и горных хребтов. Геодинамик Брэдфорд Фоули из Пенсильванского университета считает, что тектоника плит действует правильным образом, поскольку она все расставляет на свои места.

А потому теория кажется не просто убедительной, а реальной. Поверхность Земли нельзя считать неподвижной. Она постоянно взволнованная и беспокойная. Образуемые разломы — это тоже результат взаимодействия тектонических плит. Они подтверждают идею дрейфующих континентов, которая считается необычной.


Живое фото литосферных плит

Возраст дна океанов (красный цвет соответствует молодой коре)

Какое будущее у науки тектоники?

Несмотря на кажущуюся простоту и изящность, по мере накопления новых данных концепция тектоники литосферных плит непрерывно развивается.

Одним из актуальных вопросов современной тектоники и геодинамики остается объяснение причин внутриплитного магматизма и магматизма горячих точек, в результате которого возникают цепочки океанических островов, например, Гавайи или супервулканы вроде Йеллоустонского, а также крупные магматические провинции, скажем, Сибирские траппы и траппы плато Декан в Индии.

Одной из наиболее распространенных гипотез, объясняющих причины внутриплитного магматизма, является концепция мантийных плюмов — струй горячего мантийного вещества, поднимающихся с границы ядро — мантия и являющихся источником избыточного (по сравнению со средним для мантии значением) тепла, которое инициирует выплавление огромных объемов магмы.

В случае излияния на поверхность континента или океанского дна эти расплавы, по составу соответствующие базальтам, формируют крупные изверженные провинции.

Если при подъеме к поверхности земли плюм упирается в океанскую кору, то он прожигает ее, в результате чего формируются вулканические острова — подводные вулканы, вершины которых возвышаются над поверхностью океана, или крупные океанские базальтовые плато вроде плато Онтонг-Джава в Тихом океане.

Аборты и наука: что будет с детьми, которых родят

Земля достигнет критической отметки температуры через 20 лет

В космосе нашли гравитационные волны, меняющие пространство и время. Что это значит?

Литосфера и кора Земли в астрономии

Изучение Земли редко когда происходят просто так — часто поиски ученых имеют вполне четкую практическую цель. Это особенно актуально в изучении литосферы: на стыках литосферных плит выходят наружу целые россыпи руд и ценных минералов, для добычи которых в ином месте пришлось бы бурить многокилометровую скважину. Многие данные о земной коре были получены благодаря нефтепромыслу — в поисках месторождений нефти и газа ученые немало узнали о внутренних механизмах нашей планеты.


Живое фото литосферных плит

Поэтому астрономы не просто так стремятся к подробному изучению коры других планет — ее очертания и внешний вид раскрывают все внутреннее устройство космического объекта. Например, на Марсе вулканы очень высокие и многократно извергаются, когда на Земле они постоянно мигрируют, возникая периодически в новых местах. Это свидетельствует о том, что на Марсе отсутствует такое активное движение литосферных плит, как на Земле. Вместе с отсутствием магнитного поля, стабильность литосферы стала главным доказательством остановки ядра красной планеты и постепенного остывания ее недр.

Крупнейшие плиты планеты

Самой крупной плитой является Тихоокеанская, она проходит вдоль западного берега Северной Америки, далее через океан и до восточного побережья Индонезии и Японии. Данная плита не только самая большая, но и сейсмически значимая. Она образует большую часть так называемого Тихоокеанского вулканического огненного кольца, в зоне которого нередко происходят сильные землетрясения и извержения вулканов. В центре плиты находится другой горячий очаг, обусловливающий вулканическую активность на Гавайских островах.

Другой крупной плитой является Евразийская. С южной стороны она граничит с Аравийской, Зондской и Индийской плитами. Именно на этой границе и произошло недавнее землетрясение в Турции и Сирии.

Также довольно крупными являются Североамериканская, Африканская плиты, Антарктическая, Индо-Австралийская плита, Южноамериканская плита. Последняя имеет наименьшую площадь среди данной семерки.

Кто еще находится в зоне повышенного риска

Как и Япония, в зоне риска сейсмической активности находятся Филиппины. Здесь подземные толчки также приводят к оползням в горах. Мексика тоже относится к Тихоокеанскому огненному кольцу, однако жесткие строительные нормы и правила поведения сводят риск пострадать к минимуму. Турция, недавно пострадавшая от сильного землетрясения, находится в зоне нескольких линий разломов, а потому там довольно часто возникают подземные толчки, что необходимо учитывать тем, кто решил переселиться туда на ПМЖ. Нередко испытывает на себе силу подземной стихии и Иран, где, как и в Турции, не предпринимается жестких мер противодействия землетрясениям. К прочим странам с сейсмориском относятся Италия, Перу и США, хотя в последних риск довольно невелик.

Нашли нарушение? Пожаловаться на содержание

Как устроена земная тектоника

Литосфера Земли насчитывает в общей сложности семь основных тектонических плит и еще 10 второстепенных. Несмотря на крайне низкую скорость их движения друг относительно друга, с годами в отдельных участках накапливаются сильные напряжения.

Стоит отметить, что границы плит есть не только на континентах, но и на дне Мирового океана. Независимо от того, суша это или океан, в таких местах образуются молодые горные хребты или глубокие котловины, нередки подземные толчки и извержения вулканов.

Страны с наибольшим сейсмическим риском

Наиболее сейсмоопасны районы, находящиеся в зоне разломов, стыков и по краям литосферных плит. Выше всего риск землетрясений в Японии, расположенной на Тихоокеанском огненном кольце. Однако благодаря многолетним исследованиям и применению современных технологий строительства и оповещения последствия сейсмических ударов обычно удается минимизировать, а потому уровень риска для жителей сравнительно невелик.


Живое фото литосферных плит

Другим сейсмоопасным местом является Индонезия, где почти каждый год отмечаются толчки силой выше 6 баллов. В 2018 году от сильных землетрясений там погибли тысячи людей. Однако с учетом огромного населения Индонезии это капли в море, а потому риск для жизни также невелик. Вместе с тем в Индонезии случаются и катастрофические извержения, но места их возникновения хорошо известны.


Живое фото литосферных плит

В зоне риска оказывается и Китай, где из-за высокой плотности населения сильные землетрясения приводят к большому числу человеческих жертв. Усугубляет ситуацию гористая местность, из-за чего вслед за подземными толчками могут возникать и оползни, которые и сами нередко становятся причинами местных землетрясений. Но фактический риск в Китае, особенно на равнинах, относительно невелик.


Живое фото литосферных плит

Литосфера и земная кора — 2 в 1

Эти два понятия так часто встречаются в прессе и литературе, что вошли повседневный словарь современного человека. Оба слова используются для обозначения поверхности Земли или другой планеты — однако между понятиями есть разница, базирующаяся на двух принципиальных подходах: химическом и механическом.

Химический аспект — земная кора

Если разделять Землю на слои, руководствуясь различиями в химическом составе, верхним слоем планеты будет земная кора. Это относительно тонкая оболочка, заканчивающаяся на глубине от 5 до 130 километров под уровнем моря — океаническая кора тоньше, а континентальная, в районах гор, толще всего. Хотя 75% массы коры приходится только на кремний и кислород (не чистые, связанные в составе разных веществ), она отличается наибольшим химическим разнообразием среди всех слоев Земли.


Живое фото литосферных плит

Строение земной коры

Играет роль и богатство минералов — различных веществ и смесей, созданных за миллиарды лет истории планеты. Земная кора содержит не только «родные» минералы, которые были созданы геологическими процессами, но и массивное органическое наследие, вроде нефти и угля, а также инопланетные, метеоритные включения.

Физический аспект — литосфера

Опираясь на физические характеристики Земли, такие как твердость или упругость, мы получим несколько иную картину — внутренности планеты будет укутывать литосфера (от др. греческого lithos, «скалистый, твердый» и «sphaira» сфера). Она намного толще земной коры: литосфера простирается до 280 километров вглубь и даже захватывает верхнюю твердую часть мантии!

Характеристики этой оболочки полностью соответствуют названию — это единственный, кроме внутреннего ядра, твердый слой Земли. Прочность, правда, относительная — литосфера Земли является одной из самых подвижных в Солнечной системе, из-за чего планета уже не раз изменяла свой внешний вид. Но для значительного сжатия, искривления и прочих эластических изменений требуются тысячи лет, если не больше.

Последствия смещения литосферных плит. Самое известное такое место — разлом Сан-Андреас в Калифорнии

Подводя итог, земная кора — это верхняя, химически разнообразная часть литосферы, твердой оболочки Земли. Первоначально они обладали практически одинаковым составом. Но когда на глубины воздействовала только нижележащая астеносфера и высокие температуры, в формировании минералов на поверхности активно участвовали гидросфера, атмосфера, метеоритные остатки и живые организмы.

Оцените статью
Землетрясения